Sala de prensa Prensa y medios

Luces OLED más brillantes y duraderas

Grup de Recerca Javier Rodríguez-Viejo
Investigadores de la UAB y de la Technische Universität Dresden han desarrollado un nuevo método para fabricar lámparas OLED, las ya utilizadas en pantallas de TV de alta gama, que incrementa su brillo y duración, mediante el uso de capas de cristales ultraestables. La investigación se ha publicado en Science Advances.

28/05/2018

Los diodos emisores de luz orgánicos (OLEDs) han evolucionado lo suficiente como para formar ya parte de los primeros productos comerciales en forma de pantallas. Para poder competir con los productos existentes y abrir nuevas posibilidades, como la iluminación para automóviles, los dispositivos de visión virtual, o las micropantallas, los OLEDs aún tienen que mejorar su durabilidad operando con la mejor eficiencia posible. Actualmente, estas mejoras intrínsecas sólo se pueden conseguir mediante la investigación y el desarrollo en las propiedades básicas de los materiales que se utilizan para fabricarlos.
 
Los investigadores del Departamento de Física de la UAB, Joan Ràfols, Marta González y Javier Rodríguez, en colaboración con el grupo de Sebastian Reineke de la Universidad Técnica de Dresde, han demostrado que es posible mejorar el rendimiento de los OLEDs mediante la formación de capas vítreas (amorfas) ultraestables. Los cristales ultraestables representan uno de los desarrollos más nuevos dentro del mundo de los materiales vítreos ya que sus propiedades excepcionales pueden favorecer el uso en nuevas aplicaciones. Se trata de una nueva familia de cristales que se pueden sintetizar en pocos minutos con estabilidades y densidades comparables a cristales envejecidos durante millones de años, de ahí el nombre de ultraestables.
 
En un estudio detallado publicado en la revista Science Advances, los investigadores muestran cómo, con esta técnica, se pueden lograr incrementos significativos de la eficiencia y de la estabilidad de los dispositivos OLEDs en cuatro tipos diferentes de emisores fosforescentes. La mejora es de más de un 15% para ambos parámetros, y en algunas muestras individuales han observado incrementos incluso superiores. La clave ha sido fabricar las capas emisoras de los OLEDs mediante un método de crecimiento de cristales ultraestables, que requiere la optimización de las condiciones de crecimiento de las capas para que den como resultado sólidos amorfos más estables termodinámicamente.
 
El hallazgo es significativo porque se trata de una optimización que no implica cambiar ni los materiales empleados actualmente ni la arquitectura de los dispositivos, dos factores clave para hacer mejoras en el campo de los OLEDs. De este modo, se puede estudiar su aplicación para cualquier disposición específica de apilamiento de los OLEDs -diferente según sea la aplicación tecnológica-, algo muy apreciado por la industria. En particular, el descubrimiento se puede aplicar para mejorar los OLEDs de fluorescencia retardada activada térmicamente (TADF), un determinado tipo de OLED de gran interés actualmente.
 
Los investigadores han demostrado que las mejoras se pueden atribuir a un nivel fundamental, a modificaciones en la dinámica de los excitones en la nanoescala. Esto sugiere que otras propiedades fundamentales de los semiconductores orgánicos, como pueden ser el transporte, la separación de carga o la transferencia de energía, también pueden verse afectadas y dar lugar a otras posibles mejoras tecnológicas.
 
Sobre el Grupo de Nanomateriales y Microsistemas (GNaM)

GNaM forma parte del departamento de Física de la Universitat Autònoma de Barcelona y está dirigido por el Prof. Javier Rodríguez-Viejo. El grupo desarrolla actividades de investigación en el ámbito del crecimiento y caracterización de cristales ultraestables haciendo énfasis en el estudio de las propiedades térmicas, termodinámicas y de transporte. En las condiciones óptimas de formación estos materiales tienen propiedades sorprendentes y se caracterizan por una mayor densidad, mejor estabilidad cinética y termodinámica, mejor propiedades mecánicas y anisotropía molecular, entre otros. Estas propiedades están favoreciendo actividades de investigación muy intensas en el marco de los materiales vítreos. GNaM también desarrolla nuevas técnicas para caracterizar las propiedades termoeléctricas de materiales desordenados y de baja dimensionalidad. Miembros de GNaM han fundado una start-up, FutureSiSens SL, para la comercialización de sensores termoeléctricos de base silicio.
 
Sobre el grupo Light-Emitting and eXcitonic Organic Semiconductor (LEXOS)

Este grupo es parte del Dresden Integrated Center for Applied Physics and Photonics Materials (IAPP) y del Institute of Applied Physics of the Technische Universität Dresden. Está dirigido por el Prof. Sebastian Reineke. El grupo LEXOS tiene una amplia experiencia en la investigación y el desarrollo de OLEDs. La investigación actual se centra en el estudio de nuevas arquitecturas, óptica y propiedades de transporte y recombinación de portadores, así como la incorporación de dopantes y el estudio de la estabilidad térmica.

La investigación del grupo catalán se ha realizado dentro de proyectos financiados por el MINECO: MAT2013-40896-P: Vidrios ultraestables: fundamentos y aplicaciones, y MAT216-79579-R: TRANSPORTE FONÓNICO EN NANOARQUITECTURAS ANISOTRÓPICAS PARA EL DESARROLLO DE DISPOSITIVOS EN APLICACIONES DE EFICIENCIA ENERGÉTICA.
 
Artículo de referencia: J. Ràfols-Ribé, P.-A. Will, C. Hanisch, M. González-Silveira, S. Lenk, J. Rodríguez-Viejo, S. Reineke, High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).