Vés al contingut principal
Universitat Autònoma de Barcelona
Departament de Microelectrònica i Sistemes Electrònics

Defensa de tesi de Javier Cuenca

16 oct. 2025
Compartir a Bluesky Compartir a LinkedIn Compartir per WhatsApp Compartir per e-mail

Defensa de tesi de Javier Cuenca Michans el pròxim 16 d'Octubre a les 11:00h. Sala d'actes Pepe Millán. Instituto de Microelectrónica de Barcelona.

Portada defensa tesis Javier Cuenca

Doctorand: Javier Cuenca Michans.

Títol: Low-Power Lab-on-CMOS ISFET Arrays for Low-Cost Portable Biomedical Applications.

Directors: Francisco Serra Graells, Antonio Baldi Coll, Josep Maria Margarit Taule.

Tutor: Francesc Serra Graells.

Data i hora lectura: 16/10/2025, 11:00h.

Lloc lectura: Sala d'actes Pepe Millán. Instituto de Microelectrónica de Barcelona.

Programa de Doctorat: Enginyeria Electrònica i de Telecomunicació.

Departament on està inscrita la tesi: Departament de Microelectrònica.

 

Abstract

The integration of sensors in CMOS technology has revolutionized chemical and biological sensing by enabling high-density integration and low production costs. Ion-Sensitive Field-Effect Transistors (ISFETs), in particular, offer versatility and seamless CMOS integration. Large-scale ISFET arrays enable parallel real-time ion detection, advancing biomedical applications like DNA sequencing. Concurrently, lab-on-chip (LoC) systems perform complex biochemical analyses on a single chip, offering cost and time advantages over traditional systems. When built around CMOS circuits, these evolve into lab-on-CMOS platforms with enhanced sensing capabilities.This PhD thesis investigates CMOS ISFET array integration into lab-on-CMOS platforms to develop compact, intelligent biochemical sensors. A novel ISFET pixel architecture is introduced, addressing ISFET limitations and incorporating in-pixel analog-to-digital conversion. Implemented in a 65-nm CMOS process, 8x8 and 16x16 arrays are validated electrically and electrochemically. Post-processing with HfO¿ via atomic layer deposition improves pH sensitivity and reduces drift. Two lab-on-CMOS fabrication methods are demonstrated: (i) packaging mm-scale chips into cm-scale microfluidics, and (ii) direct on-chip microfluidic integration—both compatible with cost-effective biomedical use. In addition, three applications are explored: (1) a reference-electrode-free multi-ionic probe for sub-mL measurements, (2) compact digital immunoassays for biomarker detection, and (3) neuromorphic designs mitigating ISFET non-idealities for continuous spatiotemporal ion dynamics monitoring in biochemical and physiological studies.

Dins de: