Educational Values of Science Inside and Outside the Classroom

Code: 102086
ECTS Credits: 6

<table>
<thead>
<tr>
<th>Degree</th>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500798 Primary Education</td>
<td>OT</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Contact

Name: Marta Fonolleda Riberaygua
Email: Marta.Fonolleda@uab.cat

Use of Languages

Principal working language: catalan (cat)
Some groups entirely in English: No
Some groups entirely in Catalan: Yes
Some groups entirely in Spanish: No

Teachers

Marta Fonolleda Riberaygua

Prerequisites

It is recommended to have passed the compulsory subjects about science education before doing this subject.

Objectives and Contextualisation

To identify scientific activity as a significant part of contemporary culture.

To understand values and ideas of the scientific activity in contemporary context.

To characterize institutions which can support schools for science education.

To analyse the presence of scientific activity in the media.

To establish connections between the primary education curriculum and the science education activities we can find.

Competences

- Design and regulate learning spaces in contexts of diversity that take into account gender equality, equity and respect for human rights and observe the values of public education.
- Design, plan and evaluate education and learning processes, both individually and in collaboration with other teachers and professionals at the centre.
• Develop the functions of tutoring and guidance of pupils and their families, attending to the pupils own needs. Understand that a teacher's functions must be perfected and adapted in a lifelong manner to scientific, pedagogical and social changes.
• Foster reading and critical analysis of the texts in different scientific fields and cultural contents in the school curriculum.
• Generate innovative and competitive proposals in research and in professional activity.
• Know and apply information and communication technologies to classrooms.
• Know the curricular areas of Primary Education, the interdisciplinary relation between them, the evaluation criteria and the body of didactic knowledge regarding the respective procedures of education and learning.
• Reflect on classroom experiences in order to innovate and improve teaching work. Acquire skills and habits for autonomous and cooperative learning and promote it among pupils.
• Work in teams and with teams (in the same field or interdisciplinary).

Learning Outcomes

1. Identifying aspects common to all the experimental sciences and examining them in depth.
2. Knowing how to communicate and present an argument in science lessons.
3. Planning for scientific learning situations in contexts outside of the school.
4. Promoting the use of explanatory models.
5. Relating science with its technological applications, with its social impact on the didactic situations pertaining to the school.

Content

The contents of the course are:

• scientific education to train citizens in contemporary society: how we approach at our social context? Which are the values of science in the present context? Anyone can do scientific activities? Where is science in my life?
• science in and out the classroom: shall we go out of school? How to establish links between the curriculum and museums activities? How can we program it?
• museums and science centers as learning spaces: Which are the characteristics of museums and science centers? Do they work with the same didactical models that we work in the school? do we know how to evaluate the quality of their activities?
• professionals of Science Centers: Which professional competences we need to work in Science Centers? What we can establish connections between science centers and school?

Methodology

The methodology of the course combines oral presentations and reflections using written and audiovisual documentation. Visits to museums and Science Centers are included.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Directed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>12</td>
<td>0.48</td>
<td>1, 5</td>
</tr>
<tr>
<td>Reading forums</td>
<td>15</td>
<td>0.6</td>
<td>3</td>
</tr>
</tbody>
</table>
Sharing and discussion 8 0.32 3
Visits to institutions that offer scientific education activities 10 0.4 3, 4, 5, 2

Type: Supervised

Tutoring 28 1.12 1, 3, 4, 5, 2

Type: Autonomous

Independent learning 75 3 1, 5

Assessment

The evaluation of the course will be held throughout the semester with a variety of activities that combine individual and collective group. Individual evaluation consists of a written exam and a written reflection around the forums and the bibliography of the course. The group evaluation consists in designing a teaching proposal which include a visit to a museum or Science Center.

Attendance is compulsory. Students must attend more than 80% of the lessons to be evaluated.

All evaluation activities must be submitted the last day of the course and there is no remedial exam.

Final grades will be notified via virtual campus, 15 days after. Then, a review will be considered.

Total or parcial copy of the examen or the written works will be a reason to fail the course.

Exam and written works grades must be passed to be able to consider the average qualification

Assessment Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual reflection work</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>1, 3, 4, 5, 2</td>
</tr>
<tr>
<td>Proposal of teaching unit about science education outside the classroom</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>1, 3, 4, 5</td>
</tr>
<tr>
<td>Written exam</td>
<td>30</td>
<td>2</td>
<td>0.08</td>
<td>1, 3, 4, 5, 2</td>
</tr>
</tbody>
</table>

Bibliography


BONIL, J. (2010), "Educació científica en temps de crisi" dins de *Guix*, 369, 15-20


