Plant Physiology and Metabolism

Code: 43863
ECTS Credits: 6

<table>
<thead>
<tr>
<th>Degree</th>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4316231 Plant Biology, Genomics and Biotechnology</td>
<td>OB</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Contact

Name: Carlota Poschenrieder Wiens
Email: Charlotte.Poschenrieder@uab.cat

Other comments on languages

English used in lab, seminars, and most of the lectures

Use of languages

Principal working language: english (eng)

Teachers

Josep Allué Creus
Joan Barceló Coll
Isabel Corrales Pinart
Benet Gunsé Forcadell
Roser Tolra Perez

Prerequisites

Basic knowledge in Plant Physiology and Plant Metabolism

Objectives and Contextualisation

Acquisition of an integrative view of how different study levels (molecular, metabolic, and physiologic) cooperate in the functioning of the whole plant, with special emphasis on the metabolic diversity of plants and its regulation by internal and external factors

Skills

- Apply biotechnological cell factory methods to plants and fungi to obtain new products.
- Apply knowledge of functional mechanisms of various different organizational levels in plants to the characterization of growth and development processes of the whole plant organism.
- Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
- Propose and analyze ad hoc solutions derived from plant research, in accordance with the situations and needs of each case.
• Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
• Use and manage bibliographical information and computer resources in the area of study.
• Use scientific terminology to argue the results of research and present them in English both orally and in writing in an international environment.

Learning outcomes

1. Apply knowledge of plants' secondary metabolism to industrial biotechnological uses.
2. Choose and apply experimental tools for plant phenotyping.
3. Choose and apply model plants for the study of functional mechanisms in plants.
4. Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
5. Describe the metabolic processes of plants and apply techniques to study these.
6. Describe the processes for transporting plants and apply techniques to study these.
7. Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
8. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
9. Use and manage bibliographical information and computer resources in the area of study.
10. Use scientific terminology to argue the results of research and present them in English both orally and in writing in an international environment.

Content

Plant cell compartmentation

Energy transformation

Transport processes in plants and their regulation

Primary metabolism

Diversity of secondary metabolism

Regulation of plant metabolism

Industrial use of plant secondary metabolism

Experimental techniques in Plant Physiology and Metabolism

- Growth analysis and phenotyping
- Membrane stability
- Water and ion relationships
- Chlorophyll fluorescence
- Analysis of metabolism

Methodology

Presencial activities are lectures, seminars, lab. practice, and visit to research institution. Attendance is required; absence should be justified. Lectures are held by the academic staff. Seminars include an individual
oral presentation of a selected research article by each student and discussion. For lab practice students are divided into 3 groups. Part of the lab practices are demonstrative. For each practical session students have to prepare a report presenting and discussing the results.

Elaboration of seminar presentations and lab reports are supervised activities;

Autonomous activities include scientific reading and personal study

Students can ask the academic staff for personal tutorial session

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Directed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab practice</td>
<td>9.5</td>
<td>0.38</td>
<td>5, 6, 8, 9, 10</td>
</tr>
<tr>
<td>Lectures</td>
<td>18</td>
<td>0.72</td>
<td>1, 2, 3, 5, 6</td>
</tr>
<tr>
<td>Seminars</td>
<td>10</td>
<td>0.4</td>
<td>4, 7, 8</td>
</tr>
<tr>
<td>Type: Supervised</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of seminars and reports</td>
<td>24</td>
<td>0.96</td>
<td>1, 2, 3, 4, 5, 6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>Type: Autonomous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal study, consult and analysis of articles and reports</td>
<td>87.5</td>
<td>3.5</td>
<td>1, 3, 5, 6, 7, 9</td>
</tr>
</tbody>
</table>

Evaluation

Final qualification is composed by the following items: attendance and participation in lectures and seminars (10%), report of laboratory activities 20%, individual oral presentation at seminar 30%, and written exam of lecture contents (40%)

Evaluation activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance and participation in lectures and seminars</td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>1, 7, 8, 10</td>
</tr>
<tr>
<td>Lab report</td>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>3, 4, 7, 9, 10</td>
</tr>
<tr>
<td>Oral presentation</td>
<td>30%</td>
<td>0</td>
<td>0</td>
<td>4, 7, 9, 10</td>
</tr>
<tr>
<td>Written exam</td>
<td>40%</td>
<td>1</td>
<td>0.04</td>
<td>1, 2, 5, 6, 8</td>
</tr>
</tbody>
</table>

Bibliography

Barceló J (2010) Perspectivas y retos de estudio en Fisiología vegetal, Boletín de la Sociedad Española de Fisiología vegetal 51: 35-44

