Contents

Introduction	xi
Chapter I. Pseudo-Riemannian Manifolds	1
1. Connections	1
2. First results on pseudo-Riemannian manifolds	5
2.1. Associate connection	5
2.2. Curvature	6
2.3. Covariant differentiation and divergence	9
2.4. Divergence of the Ricci tensor	9
2.5. Lie derivative and infinitesimal isometries	11
3. Laplacians	12
4. Sobolev spaces of tensors on Riemannian manifolds	14
5. Lorentzian manifolds	16
5.1. Definitions	16
5.2. Specific notation for Lorentzian manifolds	17
Chapter II. Introduction to Relativity	19
1. Classical fluid mechanics	19
1.1. A lemma on derivation of integrals	19
1.2. Mass of a fluid. Continuity equation	20
1.3. Total force	21
1.4. Cauchy principle	22
1.5. Differential expression of the motion equations	22
2. Kinematics of special relativity	23
2.1. Inertial systems	23
2.2. Postulates of special relativity	24
2.3. Lorentz transformations	25
2.4. Inertial systems and the Minkowski space	29
2.5. Contraction of lengths	30
2.6. Proper time of a particle	31
2.7. Time dilation	33

Contents

3. Dynamics of special relativity	34
3.1. Mass and momentum	34
3.2. Collision laws. Equivalence of mass and energy	35
3.3. Minkowski force	37
3.4. Relativistic fluid dynamics	38
3.5. Stress-energy tensor of a fluid	40
4. General relativity	41
4.1. Fundamentals	41
4.2. Einstein's field equation	42
5. Cosmological models	45
6. Appendix: a theorem in affine geometry	46
Chapter III. Approximation of Einstein's Equation by	
the Wave Equation	49
1. Perturbations of the Ricci tensor	49
2. Einstein's equation for small perturbations of the Minkowski metric	53
3. Action on metrics of diffeomorphisms close to the identity	55
4. Continuing the calculation of Section 2	58
5. Comparison with classical gravitation	60
Chapter IV. Cauchy Problem for Einstein's Equation with Matter	63
1. Differential operators in an open set of \mathbb{R}^{n+1}	64
2. Differential operators in vector bundles	70
3. Harmonic maps	73
4. Admissible classes of stress-energy tensors	76
5. Differential operator associated to Einstein's equation	79
6. Constraint equations	81
7. Hyperbolic reduction	88
8. Fundamental theorem	90
9. An example: the stress-energy tensor of holonomic media	101
10. The Cauchy problem in the vacuum	107
Chapter V. Stability by Linearization of Einstein's Equation,	
General Concepts	109
1. Classical concept of stability by linearization of Einstein's equation	
in the vacuum	109
2. A new concept of stability by linearization of Einstein's equation	
in the presence of matter	111
3. How to apply the definition of stability by linearization of	
Einstein's equation in the presence of matter	115
4. Change of notation	120
5. Technical details concerning the map Φ	120
6. Tangent linear map of Φ	125

viii

Chapter VI. General Results on Stability by Linearization	
when the Submanifold M of V is Compact	129
1. Adjoint of $D_{(a,k)}\Phi$	129
2. Results by A. Fischer and J. E. Marsden	133
3. A result by V. Moncrief	135
4. Appendix: General results on elliptic operators in compact manifolds	143
Chapter VII. Stability by Linearization of Einstein's Equation	
at Minkowski's Initial Metric	149
1. A further expression of $D_{(q,k)}\Phi$	150
2. The relation between Euclidean Laplacian and stability	
by linearization at the initial Minkowski metric	152
3. Some proofs on topological isomorphisms in \mathbb{R}^n	153
4. Stability of the Minkowski metric: Y. Choquet-Bruhat	
and S. Deser's result	162
5. The Euclidean asymptotic case	164
5.1. $\mathcal{W}^{p,s}_{\delta}(\mathbb{R}^n)$ Sobolev spaces and their duals	167
5.2. Some results on elliptic and Fredholm operators in \mathbb{R}^n	169
5.3. Proof of Theorems VII.10 and VII.11	172
Chapter VIII. Stability by Linearization of Einstein's Equation	
in Robertson-Walker Cosmological Models	177
1. Euclidean model	179
2. Hyperbolic model	180
3. Sobolev spaces and hyperbolic Laplacian	181
3.1. Δ gives an isomorphism between $\mathcal{F}^{s}(\mathbb{H}^{3})$ and $\mathcal{F}^{s-2}(\mathbb{H}^{3})$	182
3.2. A draft of the proof of Theorem VIII.3	187
4. Spherical model	190
4.1. First and second derivatives of Φ	190
4.2. Adjoint map of $D\Phi$	192
4.3. Proof of instability	193
5. Universes that are not simply connected	198
References	201
Index	205

http://www.springer.com/978-3-0346-0303-4

Stability by Linearization of Einstein's Field Equation Bruna, L.; Girbau, J. 2010, Approx. 225 p., Hardcover ISBN: 978-3-0346-0303-4 A Birkhäuser book