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Abstract – We propose a novel approach to estimate the marginal external 

congestion cost of motor vehicle travel and associated welfare losses, while 

allowing for hypercongestion, i.e. when the road supply curve is backward bending. 

We apply this approach to the city of Rome, using quasi-experimental variation in 

public transit supply to address endogeneity issues. We find that the marginal 

external cost of travel is substantial. Although hypercongestion is rare in our data, 

it accounts for about 30 percent of congestion-related welfare losses. We 

demonstrate that the marginal congestion-relief benefit of public transit supply is 

sizeable and approximately constant over the full range of public transit supply 

levels. These results suggest that substantial welfare gains can be obtained not only 

by introducing road pricing, but also by adopting quantity-based measures (e.g. 

adaptive traffic lights) to avoid hypercongestion. We also show that road congestion 

has a strong effect on travel time delays of bus travelers.  
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1. Introduction 

Road congestion is a major issue in cities throughout the world. To deal with this problem, 

policymakers have several options, including road tolls, quantity-based restrictions (e.g. road-

plate rationing), subsidized public transit supply and transport infrastructure expansion. None 

of these options comes at a low cost. Tolls, fuel taxes, and quantity restrictions are politically 

controversial (Parry and Small, 2005; Small and Verhoef, 2007), while transit supply and 

infrastructure expansions are expensive (Parry and Small, 2009; Duranton and Turner, 2011). 

It is therefore important to know how large the welfare losses that we can avoid by adopting 

these policies are. Yet, quite surprisingly, we still know very little about the costs of congestion 

in cities.  

The main objective of this paper is to measure the welfare losses of road congestion in 

large cities. We estimate these losses based on traffic observations from a wide set of roads in 

Rome, the Italian capital. We quantify the marginal external costs and the deadweight losses of 

congestion on motor vehicle travelers. We also estimate the costs of congestion on bus travelers, 

who constitute a substantial share of the travel market in Rome. Finally, we evaluate the 

effectiveness of public transit supply as a tool to alleviate road congestion. 

 Evaluating the welfare losses of congestion is conceptually simple, but estimating them 

is far from trivial. Estimation requires knowledge of the relation between travel (time) costs 

and traffic flow (the ‘road supply curve’). However, the supply relation on heavily-congested 

roads is backward bending, a phenomenon which is labelled as hypercongestion (Arnott and 

Inci, 2010; Arnott, 2013). Hence, this relation cannot be estimated using standard econometric 

techniques. Keeler and Small (1977) address this issue by estimating travel time as a function 

of flow and then inverting the estimated function. We improve upon their methodology by 

following a transportation science literature which estimates the effect of vehicle density on 

travel time and then derive the travel time-flow relation by applying fundamental identities (for 

an overview, see Hall, 1996).1 The latter literature estimates the causal effect of density on 

travel time without accounting for endogeneity issues. Common unobservable shocks, e.g. road 

accidents, may affect density and travel time simultaneously, producing an omitted variable 

bias. More fundamentally, density is the product of flow and travel time. Hence, any 

measurement error in travel time induces a positive correlation with density. The first 

contribution of this paper is to deal with the issue of hypercongestion, while proposing an 

instrumental variable approach to account for the endogeneity in the relation between travel 

                                                           
1 In a dynamic model of congestion, Henderson (1974) also models travel time as a function of density, measured 

as the quantity of commuters on a road at a given time. See also Henderson (1981). 
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time and density. We exploit changes in public transit supply in Rome, due to labor strikes, as 

an instrument for density.  

A second important contribution of our paper is that we employ our road supply 

estimates to quantify the marginal external cost of congestion and the resulting deadweight 

losses, while explicitly accounting for hypercongestion. We find that these losses are 

substantial. Furthermore, although hypercongestion is present in only about 2 percent of the 

observations, we find that about 30 percent of the welfare losses of congestion are due to 

hypercongestion alone. We show that the welfare losses due to travel delays in the presence of 

hypercongestion are an order of magnitude – about 50 times – higher than the welfare losses 

realized when on the equilibrium lies on the upward-sloping part of the road supply curve. 

These results suggest that policy interventions to curb congestion, such as road pricing, can 

bring to significant welfare gains. However, even if pricing is unavailable (possibly due to 

political constraints), it may be possible to achieve large gains just by removing 

hypercongestion, for example by adopting traffic management measures such as adaptive traffic 

lights (Kouvelas et al., 2017).  

We argue that a complete analysis of the costs associated with road congestion requires 

considering how all road users are affected. Congestion imposes travel time losses not only on 

motor vehicle travelers but also on bus travelers. Accordingly, we estimate the costs of 

congestion on bus users. In cities such as Rome, where buses are the mainstay of the transit 

system and rarely travel on dedicated corridors, these costs are potentially large. We show that 

the marginal external cost on bus travelers is substantial and that about one third of the welfare 

losses due to motor vehicle congestion are borne by bus travelers. These results are important 

not only because existing literature typically ignores the effect of motor vehicle congestion on 

bus travelers, but also because they deliver clear policy implications. Specifically, our results 

provide an economic foundation for traffic management interventions such as the design of 

separate bus lanes (see, e.g., Basso and Silva, 2014). 

Having established that congestion produces non-negligible welfare losses, we turn our 

attention to one of the most commonly advocated remedies: the provision of (subsidized) public 

transport. In Rome, as in many other cities, public transport subsidies are large, especially given 

the relatively limited modal share of transit.2 Yet, little is known about the congestion-relief 

                                                           
2 In most OECD countries, subsidies to public transit range from 30% to 90% of operating costs (USDOT, 2011, 

Kenworthy and Laube, 2001). In addition, capital costs are also frequently subsidised. In Rome, similarly to other 

European cities, around 28% of total passenger-kms are taken by transit. In the US, public transit carries less than 

1% of passenger kilometers, but receives about 25% of all transit funding (USDOT, 2011). Despite this, political 

support for subsidies is substantial (Cummings and Manville, 2015). 
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benefit of public transit – i.e., the reduction in motor vehicle and bus travel times due to the 

provision of public transit services. We follow a recent literature that uses a quasi-experimental 

approach exploiting shocks in transit supply due to labor strikes, but we exploit one 

fundamental data novelty: we observe strikes that vary at the intensive margin, i.e. the reduction 

in the number of public transit per strike. To be more precise, we have information about hourly 

reductions in public transit supply during strikes – measured in vehicle kilometers – which 

allows us to estimate the marginal congestion relief benefit of public transit. This is relevant 

because policy decisions typically focus on marginal transit supply changes, whereas complete 

shutdowns are an uncommon policy option. Moreover, when we estimate the congestion relief 

benefit, we also include bus travelers, which previous literature ignored.  

We show that the marginal congestion benefit of public transit supply is sizeable and 

approximately constant over the full range of supply levels. Nevertheless, it appears that the 

total congestion relief benefit is moderate. This suggests that there is room for a range of 

policies that reduce congestion (e.g., bus lanes, increase in parking prices) to increase the 

efficiency of transit.  

Our work relates to different strands of literature. Regarding the welfare losses of 

congestion, numerous papers measure the relationship between travel time (or speed) and traffic 

flow at the level of single roads (see Small and Verhoef, 2007, for an overview), but none 

addresses the fundamental endogeneity issue discussed earlier. Furthermore, most papers rely 

on limited samples of roads to quantify the marginal external congestion costs and the welfare 

losses in a city.3 In recent work, Couture et al. (2016) estimate aggregate travel supply relations 

for a large sample of North American cities. Akbar and Duranton (2016) estimate travel supply 

and demand relationships at a citywide level for Bogotà, exploiting travel surveys and Google 

Maps data. Our work is complementary to theirs. We adopt a disaggregate framework that 

measures costs at the level of single roads. Our approach may be less representative of travel 

costs at a wide area level, for example because it does not account for the possibility that drivers 

avoid heavily congested roads by taking detours. On the other hand, our approach provides a 

more fine-grained view of congestion costs at the street level. We show that, even though heavy 

congestion may be locally concentrated (e.g., because only a few roads are jammed at a certain 

moment), the implied welfare losses it produces are relevant in the aggregate.4  

                                                           
3 Geroliminis and Daganzo (2008) use similar road level data to estimate a speed-density curve for the city of 

Yokohama. They do not focus on estimating external costs and welfare losses. 
4 Akbar and Duranton also devise a strategy to deal with endogeneity issues, based on reconstructing trip 

counterfactuals. We tackle this problem differently (see above). 
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The standard way of measuring the marginal external cost of congestion uses directly 

postulates a positive relationship between travel time and flow in order to derive the optimal 

road tax, as suggested by Pigou (1920). However, this assumption is violated in presence of 

hypercongestion causing underestimates of the marginal external cost and welfare gains of 

policies that reduce demand (Fosgerau and Small, 2013). Nonetheless, the assumption is widely 

used in the academic literature (e.g., Mayeres et al., 1996), in authoritative reports by the US 

Federal Highway Administration (e.g., FHWA, 1997) and in much-cited handbooks (e.g., 

Maibach et al., 2008). We believe we are the first to estimate the welfare losses of road 

congestion while acknowledging that travel time is a function of density. Our paper also 

contributes to the literature on the costs of congestion by providing evidence on the spillover 

effects of congestion on bus travelers.5 To our knowledge, we are the first to provide this sort 

of evidence for a whole city.  

Our paper also belongs to a growing literature that aims to evaluate the congestion relief 

benefit of public transit. Focusing on different cities, Anderson (2014), Adler and van Ommeren 

(2016), and Bauernschuester et al. (2016), have used quasi-experimental approaches exploiting 

transit strikes, showing that the congestion-relief benefit is significant.6 We contribute to this 

literature by analyzing the marginal effects of partial service shutdowns. Furthermore, by 

measuring the travel time losses of congestion for bus users, we evaluate the congestion-relief 

benefit also on transit users themselves. 

Finally, in a broader perspective, our paper contributes to a diverse literature estimating 

the importance of transport externalities and the effects of transport policy. Davis (2008) 

analyzes the effects of driving restrictions on air quality. Chay and Greenstone (2005) examine 

the social costs of air pollution. Duranton and Turner (2011; 2012; 2016) and Duranton et al. 

(2014) examine the consequences of highway expansion for congestion, city growth and trade 

and the effects of urban structure on driving and congestion externalities. Baum-Snow (2010) 

demonstrates the effect of highway expansion on commuting flows. Anderson and Auffhammer 

(2013) examine car weight externalities.  

The paper proceeds as follows. In section 2, we introduce the theory that underlies our 

empirical identification strategy. Section 3 presents the empirical models to estimate the 

                                                           
5 See also Small (2004) who finds that reductions in road congestion induce substantial reductions in travel time 

for public transit travelers.  
6 Using aggregate numerical models, Nelson et al. (2007) and Parry and Small (2009) find that during peak hours 

subsidies in excess of 90% of operating cost are justified for Washington D.C., Los Angeles and London. Börjesson 

et al. (2015) show that, despite the adoption of road tolls, substantial subsidies are still welfare enhancing in 

Stockholm. 
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marginal external costs of motor vehicle travel as well as the congestion relief benefit of transit. 

We then characterize Rome’s transportation market in section 4 and describe the data. Section 

5 provides our main results: the marginal external cost of motor vehicle travel on motor vehicle 

and bus travelers as well as the effect of public transit supply on motor vehicle travel time.7 In 

section 6, we examine the welfare effects of public transport subsidies while adjusting public 

transit supply. Section 7 concludes. 

 

2. Theoretical background 

We develop a simple theoretical framework to guide the estimation of the road supply curve, 

the marginal external cost of congestion and the ensuing welfare losses, as well as the 

congestion relief benefit of public transit supply. Our approach considers an isotropic road in a 

stationary steady-state.8 Private motor vehicles (cars and motorbikes) share the road with buses. 

Individuals choose whether to travel and which mode to use depending on generalized travel 

costs. Road congestion affects the travel time of motor-vehicle travelers 𝑇 – as well as of bus 

travelers  𝑇𝑃𝑇.  

 

2.1 The road supply curve 

We first focus on the road supply curve. In line with the transport engineering literature (e.g. 

Helbing, 2001), we assume that travel time 𝑇 per kilometre is an increasing and convex function 

of the density of motor vehicles on the road, D: 

(1) 𝑇 =  ℎ(D), 
where 𝜕𝑇/𝜕𝐷 > 0.9 Using (1) and the fact that density is defined as 𝐷 = 𝐹𝑇, where 𝐹 denotes 

the flow of motor-vehicle travelers. Rewriting (1) as 𝑦(𝑇, 𝐹) = 𝑇 −  ℎ(FT)  =  0, we find 

through the implicit function theorem that: 

(2) 
𝑑𝑇

𝑑𝐹
= −

𝜕𝑦
𝜕𝐹
𝜕𝑦
𝜕𝑇

=

𝜕ℎ(𝐹𝑇)
𝜕𝐹

1 −
𝜕ℎ(𝐹𝑇)

𝜕𝑇

=

𝜕𝑇
𝜕𝐷

𝑇

1 −
𝜕𝑇
𝜕𝐷

𝐹
, 

                                                           
7 We also discuss some other results (reported in appendix) including: the effect public transit fares on motor 

vehicle travel time as well as flow, the effect of public transit supply on motor vehicle flow as well as the 

relationship between motor vehicle travel times and bus travel times.  
8 As an alternative approach, one may assume roads that have bottlenecks (Arnott, 2013; Fosgerau and Small, 

2013). We will also interpret our empirical results assuming roads with bottlenecks. 
9 For the moment, we ignore that motor vehicle travel time depends directly on the number of buses. We account 

for this effect in the empirical analysis. 
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which describes the relationship between 𝑇 and 𝐹.10 To understand this relationship, note that 

when density is zero, flow is zero as well. Higher density raises travel time and, given (2), flow 

if 𝜕𝑇/𝜕𝐷  < 1/𝐹. However, as density increases, the point where 𝜕𝑇/𝜕𝐷 > 1/𝐹 is reached, 

so  𝑑𝑇/𝑑𝐹 < 0 and 𝑑𝐹/𝑑𝐷 < 0.11  Greater density of vehicles has a positive direct effect on 

flow, but a negative indirect effect because vehicles travel at lower speed. When the latter 

dominates, the travel time-flow relationship bends backwards, and there is hypercongestion. 

Figure 1 provides an illustration.12   

Figure 1 - Fundamental diagram of traffic congestion.  

 

The above discussion implies that there is a maximum flow, defined as 𝐹 ̅ =
1

𝜕𝑇

𝜕𝐷

, and a 

corresponding level of density 𝐷̅. To illustrate, let us assume that 𝑇 = 𝛽𝑒𝛼𝐷 , where α, 𝛽 > 0, as 

proposed by Underwood (1961). We adopt this functional form in the empirical analysis, 

because it provides an accurate description of the travel time-density relation for roads in our 

sample (we test it against more general statistical relationships). 13 In this case, we have 

(3) 

  

𝑑𝑇

𝑑𝐹
=

αT2

1 −  αD
⟹  𝐷̅ =

1

α
, 𝐹̅ =

1

α𝛽𝑒
 

                                                           
10 Similarly it can be shown that: dF/dD=(1-F ∂T/∂D)/T, which describes the relationship between 𝐹 and 𝐷. Note 

that 𝑑𝑇/𝑑𝐹 and 𝑑𝐹/𝑑𝐷 have the same sign. 
11 Convexity of h(.) is crucial for this argument: if the function is linear, hypercongestion does not occur. 
12 There is a debate in the literature about whether hypercongestion may provide a stable equilibrium given this 

setup (Small and Verhoef, 2007). Recently, assuming linear demand functions, Arnott and Inci (2010) have shown 

that the equilibrium is stable. 
13 The literature on highways supports our assumption that travel time is an exponential function of density above 

a certain critical value, called the critical density. Below this critical value there is no relationship between travel 

time and density (see e.g. Taylor et al.,2008). Typically, the critical density is about 8 motor vehicles per kilometer 

on a 120 km highway. In our data, only about a quarter of density observations are below 8. Within cities, however, 

the critical density is likely lower. Our results do not change when we exclude observations with a density below  

8. 
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Given these assumptions, the maximum flow is such that 𝑇 = 𝛽𝑒. Hypercongestion thus occurs 

when 𝐷 > 𝐷̅.  

 

2.2 The demand for transport 

There is a given number of individuals in the transport market, denoted by N, who have perfect 

information. We assume that each individual takes at most one trip and all trips are of equal 

length, normalized to one. Individuals can travel by private motor vehicles or public transit and 

are heterogeneous in their reservation utility of travel by each mode. Aggregate travel demands 

for private motor vehicles and transit are negatively sloped and with positive cross-price 

elasticities. The generalized price of public transit travel, 𝑝𝑃𝑇, increases with travel time, 𝑇𝑃𝑇, 

and the fare, 𝑓, whereas it decreases with transit supply 𝑆  (e.g. through lower waiting times). 

Hence, 𝑝𝑃𝑇=𝑝𝑃𝑇(𝑇𝑃𝑇 , 𝑓, 𝑆). In total, there are 𝑁𝑃𝑇 public transit travelers, 𝐹 motor-vehicle 

travelers and 𝑁𝑃 non-travelers. The generalized price of motor-vehicle travel is equal to 𝑇. We 

have 

(4) 𝑁 = 𝑁𝑃𝑇(𝑝𝑃𝑇, 𝑇) + 𝐹(𝑇, 𝑝𝑃𝑇) + 𝑁𝑃(𝑝𝑃𝑇, 𝑇), 

where 𝑁𝑃𝑇(. , . ) and 𝐹(. , . ) are decreasing in their first argument and increasing in their second 

argument, whereas 𝑁𝑃(. , . ) is increasing in both arguments.  

 

2.3. The effect of public transit strikes 

We normalize the supply of public transit (veh-kms) during regular service to one, and denote 

by S∈[0,1] the share of service available per unit of time. This quantity is defined as the ratio 

between the quantity of service actually provided and the scheduled supply with regular service. 

If a public transit strike takes place, 𝑆 is less than one. Because motor vehicles and public transit 

are substitutes, demand for motor-vehicle transport goes up, so in the new equilibrium, 𝑇 and 

D increase. If the road is not hypercongested, the number of motor vehicle travelers (i.e., traffic 

flow) goes up during a strike. However, in presence of hypercongestion, the number of motor 

vehicle travelers may decrease. The economic loss produced by the ensuing travel time increase 

is the (negative of) the congestion relief benefit of public transit to motor-vehicle travelers. 

Furthermore, because 𝑇 goes up, if transit and private vehicles share the road, 𝑇𝑃𝑇 increases as 

well. Hence, demand for motor-vehicle travel increases even more. In addition, there is a travel 

time loss to public transport travelers, the (negative of) the congestion relief benefit of public 

transit to public transport travelers. Finally, because 𝑇 and 𝑝𝑃𝑇 both go up, 𝑁𝑃 goes up as well.  
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2.4 Equilibrium 

To facilitate the interpretation of the empirical results later on, we make three major 

assumptions about the equilibrium. First, we take one hour as our unit of time. Hence, hourly 

demand and supply are equal to each other. We ignore any variation in demand within the hour. 

The main consequence is that we have underestimates of the welfare losses of congestion, 

because travel time is a convex function of density. Second, we assume that the demand 

function is linear with a time-invariant slope: any temporal variation in demand occurs because 

of shifts in the intercept.14 Furthermore, any temporal variation in the demand function is 

exogenous to traffic conditions (e.g., workers have to be at work at a certain time). Hence, we 

disregard that demand functions are interrelated during the day, for example because of 

rescheduling of trips to avoid excessive congestion.  

 

2.5 Welfare analysis  

The total cost for society of private motor-vehicle travel equals 𝐹 · 𝑇 (we normalize the value 

of travel time to one). The standard quantity capturing the distortions on the transport market is 

the marginal external cost of motor-vehicle travel. This cost is defined as the difference between 

the time cost to society of a marginal motor-vehicle user and the time cost to this user. One of 

our objectives in the empirical analysis is to measure this cost. We consider the travel cost of 

bus users below.  

 We introduce now a measure of the marginal external cost, denoted 𝑀𝐸𝐶. Total 

differentiation of the social costs and subtracting the average cost T shows that: 

(5) 𝑀𝐸𝐶 =
𝑑[𝐹𝑇(𝐷)]

𝑑𝐹
− 𝑇  =

𝑑𝑇

𝑑𝐹
𝐹 +  𝑇 − 𝑇 =

𝑑𝑇

𝑑𝐹
𝐹 =

𝜕𝑇
𝜕𝐷

𝐷

1 −
𝜕𝑇
𝜕𝐷

𝐹
. 

 Let us focus on equilibria where the road is not hypercongested, so 1 −
𝜕𝑇

𝜕𝐷
𝐹 is positive 

and less than one. 15  An increase in density, e.g. due to an upward shift in the demand for motor 

vehicle travel, causes an increase in the steady-state flow. It follows that 𝑀𝐸𝐶 is positive. 

Assume again that 𝑇 = 𝛽𝑒𝛼𝐷 . Then 𝑀𝐸𝐶 = αD 𝑇 /(1 −  αD) .   

We use 𝑀𝐸𝐶 as a key input for our welfare analysis. Let us suppose that there are no 

other distortions and that the government aims to maximize welfare. The standard prescription 

is to introduce a road tax equal to MEC (evaluated at the optimum). The tax will then induce an 

                                                           
14 This is a standard assumption in empirical welfare analysis. 
15 Equation (6) suggests that when 𝐹 is close to 𝐹̅, which equals 1/(𝜕𝑇/𝜕𝐷), the external cost of adding one 

vehicle is infinite, which is not intuitive (given that travel time is finite when 𝐹 = 𝐹̅). However, noting that the 

number of vehicles is discrete, it appears that for 𝐹 = 𝐹̅ − 1, 𝑀𝐸𝐶 is equal to 𝐹̅𝑇, which is finite. 



10 
 

optimal flow below the equilibrium one (assuming the road is initially not hypercongested). 

The welfare gain (i.e. the eliminated deadweight loss) is straightforward to calculate. It depends, 

among other things, on the shape of the demand function. For example, when demand is 

horizontal, the welfare gain is exactly equal to optimal flow times the ensuing reduction in 

travel time. By contrast, if demand is vertical, the welfare gain is zero (because there is no 

reduction in travel time). See Figure 2, where we show the average cost function – travel time 

as a function of flow – as well as the marginal social cost, MSC, for the part where the average 

cost function is upward sloping. MEC is the difference between the MSC and the average cost 

T. 

Focus now on equilibria where the road is hypercongested, i.e. such that 1 −
𝜕𝑇

𝜕𝐷
𝐹 is 

negative. Given hypercongestion, an increase in density (due, for instance, to a shift in the 

demand function) causes an increase in travel time and a reduction in the flow. It is easy to see 

that (5) implies that MEC is negative. Furthermore, it is straightforward to show that the 

marginal social cost, MSC, which equals T/(1 −
𝜕𝑇

𝜕𝐷
𝐹), is also negative. Intuitively, any 

equilibrium with a higher flow level and lower travel time is welfare improving. This 

observation implies that an equilibrium with hypercongestion can never be optimal.  

Most of the previous empirical studies of road congestion start from the assumption that 

the relationship between travel time and flow is positive.16 Therefore, they mix observations of 

equilibria that are hypercongested and those which are not. As a result, they report an average 

measure of 𝑀𝐸𝐶 which is too low for roads that are not hypercongested, and provide a 

meaningless measure for roads that are hypercongested. 

In principle, governments may prevent hypercongestion by imposing a large toll on 

vehicles entering the parts of the road network where density exceeds the level associated with 

maximum flow. However, because (as we show below) hypercongestion is a quite sporadic and 

local phenomenon, implementing this kind of pricing could be difficult, as it would require 

varying the toll by roads and time on a short notice. Furthermore, as Figures 2 and 3 suggest, 

the equilibrium with hypercongestion on a given road may not be unique (uniqueness depends 

on the shape of the demand function, for instance).17 Therefore, pricing instruments alone may 

not be well-suited to control hypercongestion. Indeed, the first-best toll is equal to the MEC 

evaluated at the optimal allocation, which, as pointed out before, lies on the upward sloping 

                                                           
16 See for example the authoritative reports by the US Federal Highway Administration (e.g., FHWA, 1997) and 

in much-cited handbooks (e.g., Maibach et al., 2008). 
17 As we argue later on, our data actually suggest that multiplicity in unlikely in Rome, because the demand 

function is sufficiently elastic.  
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part of the supply curve. This tax may not be sufficient to avoid hypercongestion. More 

realistically, governments can intervene by adopting quantity restrictions (possibly in 

combination with pricing instruments). These include (second-best) policies such as adaptive 

traffic lights. This conclusion is backed by traffic-engineering studies which show that reducing 

inflow of traffic into cities by letting vehicles waiting longer for traffic lights when entering the 

city reduces hypercongestion, resulting in an equilibrium with lower travel times (Kouvelas et 

al., 2017). 

 

Figure 2 - Deadweight loss (DWL) from congestion with horizontal and vertical demand. 

 

  

But what can we gain by avoiding hypercongestion? An objective of our empirical 

investigation is to evaluate the magnitude of the loss to society when roads are hypercongested. 

Specifically, we determine the loss compared to the optimal equilibrium. Again, this welfare 

gain depends, among other things, on the demand function. When the latter is horizontal, the 

welfare gain is equal to the product of the optimal flow and the reduction in travel time. If the 

demand is perfectly inelastic, the welfare gain is equal to product of the optimal flow times the 

travel-time reduction. Therefore, contrary to the non-hypercongested case, there is a 

(substantial) welfare gain even if demand is vertical. Indeed, hypercongestion is a very 

inefficient way of “producing” travel. See Figure 3. 

 

Figure 3 – Equilibria and deadweight loss of hypercongestion with horizontal demand (left 

panel) and vertical demand (right panel) 
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Let us now focus on the effect of congestion on bus travelers. We have noted that the 

generalized price of public transit, 𝑝𝑃𝑇, increases with travel time, 𝑇𝑃𝑇. Not surprisingly, if 

buses share the road with other vehicles, the travel time of buses is strongly correlated with the 

travel time of motor-vehicle travelers, 𝑇. We note two empirical observations about bus travel 

time. First, it is substantially higher than motor vehicles’ travel time (for instance, because of 

the time spent stopping at bus stops). Second, bus speed depends on motor vehicles’ speed in a 

linear way with a marginal effect less than one. These observations imply the following 

relationship between the travel times of public transit and of private motor vehicles: 

(6) (𝑇𝑃𝑇)−1  =  𝜃𝑇−1  − 𝜇,   𝜇 > 0;  0 < 𝜃 < 1; 𝑇−1  − 𝜇 > 0 

Hence: 

(7) 
𝜕𝑇𝑃𝑇

𝜕𝑇
=

𝜃𝑇−2

(𝜃𝑇−1  − 𝜇)2
> 1. 

The marginal effect of motor-vehicle time on travel time of public transit is larger than one, and 

the relation between bus and motor-vehicle time is concave. For sufficiently small 𝜇, so that 

public transit speed is proportional to motor-vehicle speed, the marginal effect is a constant: 

(8) 
𝜕𝑇𝑃𝑇

𝜕𝑇
≈

1

𝜃
. 

Hence, one approach to calculate the marginal external cost of motor-vehicle travel on bus users 

is as follows: 

(9) 𝑀𝐸𝐶 𝑜𝑛 𝑏𝑢𝑠  =
𝑑𝑇

𝑑𝐹

𝑁𝑃𝑇

𝜃𝐹
. 

This approach is indirect, as it uses information on the relationship between bus and motor-

vehicle travel times. We also employ an alternative, direct approach to estimate the marginal 

external cost borne by bus travelers. Specifically, we assume that 𝑇𝑃𝑇 = 𝛾𝑒𝜎𝐷and then totally 

differentiate 𝑇𝑃𝑇 𝑤ith respect to flow. It can be shown that: 
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 (10) 𝑀𝐸𝐶  𝑜𝑛 𝑏𝑢𝑠   =
𝑑𝑇

𝑑𝐹
𝑁𝑃𝑇 [

𝜎

𝛼
(1 − 𝛼𝐷)

𝑇𝑃𝑇

𝑇
+ 𝛼𝐷

𝑇𝑃𝑇

𝑇

𝑑𝑇𝑃𝑇

𝑑𝑇
]  >

𝑑𝑇

𝑑𝐹
𝑁𝑃𝑇

𝜎

𝛼

𝑇𝑃𝑇

𝑇
. 

We find that 𝜎 is only slightly higher than 𝛼, and that 
𝑇𝑃𝑇

𝑇
 is approximately equal to 

1

𝜃
, so the 

direct and indirect approach provide very similar results. 

 

3. Empirical Approach 

We are interested in estimating the marginal external cost of congestion on motor-vehicle 

drivers. To do so, we need information about the relationship between motor-vehicle travel time 

and flow. Given hypercongestion, the relationship between 𝑇 and 𝐹 is not an injective function. 

Therefore, one cannot apply standard econometric techniques to estimate it. We therefore 

proceed as follows: we first estimate the effect of density on travel time using (1) and then 

combine this estimate with (2) to derive 𝑑𝑇/𝑑𝐹.  Given estimates of h, denoted by ℎ̂, for each 

observation of D, we calculate the predicted travel time 𝑇̂  =  ℎ̂(D), as well as the predicted 

flow 𝐹̂  =  D/𝑇̂. We show that the travel-time flow relationship obtained using 𝑇̂  and 

𝐹̂ accurately predicts the observed travel-time flow relationship.18 

Let us now assume that h is an exponential function, so 𝑇 = 𝛽𝑒𝛼𝐷 . This specification 

implies that the logarithm of travel time is a linear function of density. We have observations 

which vary by road and hour. We will therefore assume that log𝑇𝑖,𝑡,𝐷, at road i, hour t and day 

D is a linear function of density 𝐷𝑡,𝐷, given several controls 𝑋𝑡,𝐷, road fixed-effects 𝜏𝑖 and an 

error term 𝑢𝑖,𝑡,𝐷, so that: 

(11) 𝑙𝑜𝑔𝑇𝑖,𝑡,𝐷 = 𝜏𝑖 + 𝛼𝐷𝑡,𝐷 + 𝜅′𝑋𝑡,𝐷 + 𝑢𝑖,𝑡,𝐷. 

Road fixed effects capture time-invariant differences in road supply such as lane width, the 

speed limit as well as the distance of the measurement point to the next intersection. The 

controls 𝑋𝑡,𝐷 include weather (i.e. temperature using a third-order polynomial, precipitation) 

and many time controls: hour-of-weekday fixed effects (e.g., Monday morning between 9 and 

10 a.m.) and week fixed effects. These time controls aim to capture for unobserved changes in 

supply (e.g. due to road works which only occur during certain periods). We emphasize 

                                                           
18 Keeler and Small (1977) address this issue by estimating flow directly as a quadratic (and therefore possibly 

non-monotonic) function of travel time and then invert the estimated function. There are two difficulties with this 

approach. First, it usually does not provide the causal effect of flow on travel time. Second, even if the goal is to 

obtain the best fit between flow and travel time, this approach has a worse fit, at least for the data of Rome, although 

it includes more parameters compared to our approach which estimates time as a function of density. The latter 

result is intuitive, because the relationship between (log) travel time and density is monotonic, and almost perfectly 

linear, and therefore "easy to estimate", whereas the relationship between flow and travel time is nonmonotonic, 

and therefore "difficult to estimate". 
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however that the estimates without these controls are almost identical. We cluster standard 

errors by hour, so we allow 𝑢𝑖,𝑡,𝐷 and 𝑢𝑗,𝑡,𝐷 to be correlated.19 

One econometric difficulty with estimating (11) is that density is most likely 

endogenous, because it is defined as the flow multiplied with travel time – which is the 

dependent variable of interest. This may be problematic as in many studies – including the 

current one – density is not explicitly observed but derived from observations of flow and travel 

time. Therefore, any measurement error in travel time causes a positive correlation between 

travel time and density resulting in an overestimate of the effect of density.20 Measurement 

error is not the only source of endogeneity. For example, many unobserved supply shocks (e.g. 

road closures, accidents…) may simultaneously affect density and travel time.21 In the 

estimation procedure, to deal with endogeneity issues, we will use an instrumental variable 

approach using variation in the share of public transit, S, due to strikes, which causes an 

exogenous demand shock to motor-vehicle’ road travel. Note that the use of time controls in 

(11) has an additional rationale when employing an instrumental variable approach. Time 

controls also capture any variation in the supply of scheduled public transit (i.e., the schedule 

in the absence of strikes), which makes it more plausible that public transit share is exogenous. 

One issue when using public transit strikes as an instrument is that changes in public 

transit supply directly change the number of vehicles on the road, which may invalidate the 

assumption that bus strikes are valid instruments of motor-vehicle density. This is a minor issue 

however, because on average 1 percent of all vehicle flow in Rome refers to buses (specifically, 

only six buses pass a road per hour). Nevertheless, we have addressed this issue by estimating 

models where we explicitly acknowledge that an increase in public transit increases the number 

of vehicles on the road. For example, when we assume that one single bus causes the same 

travel delays as 10 motor vehicles, we still get identical results when instrumental variables 

approaches. 

A second issue is that (11) may be a restrictive specification. To deal with this issue we 

specify log travel time as a quadratic function of density and apply control functions approaches 

to instrument density. Finally, a third issue is that it is unlikely that the marginal effect of density 

                                                           
19 Hence, each cluster contains a number of observations equal to the number of road segments observed.  
20 We ran some simulations – available upon request – indicating that measurement error in travel time is a 

fundamental issue: when the standard deviation of measurement error in travel time is only 10 percent of the 

standard deviation of travel time, then the upward bias in the estimate of α is about 30 percent. Note also that, in 

presence of measurement error in flow, one would expect a standard attenuation bias (Wooldridge, 2002, p.75). 

However, our simulations indicate that measurement error in flow produces an almost negligible downward bias. 
21 The weather can also be a factor. We control for weather conditions in our empirical analysis. See below. 
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is equal for all roads. We therefore allow the marginal effect on density to be road-segment 

specific.22 

Given estimates based on (11), we can estimate MEC using (2). Intuition suggests 

however that this approach does not generate precise estimates when F approaches 𝐹 ̅, because 

the supply curve is vertical. More formally, this can be demonstrated when assuming that 

𝜕𝑇/𝜕𝐷 is a random variable with a given standard deviation, 𝑣𝑎𝑟(𝜕𝑇/𝜕𝐷). Recall from standard 

statistical theory that the ratio of two random variables does not have a well-defined variance. 

It is then standard to approximate the variance using a Taylor expansion. Using such an 

approach it can be shown that the variance of MEC can be written as follows: 

(12) 𝑣𝑎𝑟(MEC)  ≈
𝑣𝑎𝑟(𝜕𝑇/𝜕𝐷) 𝐷

(1 −
𝜕𝑇
𝜕𝐷

𝐹)
4

2

. 

The denominator of this expression contains a power of four. Combined with (2), this implies 

that the estimate of MEC divided by its standard error goes to zero when F approaches 𝐹 ̅. Thus, 

the estimates for marginal external cost for levels of flow close to its maximum may be 

unreliable. Although there are only few observations of flow close to the maximum in our data, 

we will exclude these observations (our estimate of the total welfare loss of congestion remains 

unaffected by this issue). 

We also aim to estimate the marginal external cost of congestion on bus travelers. In the 

empirical analysis, because we have data per year and cannot distinguish between roads, we 

use aggregate data on bus travelers time. However, we are able to estimate the effect of motor-

vehicle travel time on bus travel time, see (8), which allows us to calculate (9). Furthermore, 

we can estimate the effect of log motor-vehicle density on bus travel time, σ, which allows us 

to calculate  (10). 

We also estimate the effect of public transit supply on private motor vehicle travel time, 

exploiting variation during strikes. We follow the literature by relying primarily on linear 

models (Anderson, 2014). The dependent variable, 𝑇𝑖,𝑡,𝐷, is estimated as a linear function of 

public transit share 𝑆𝑡,𝐷 using the same type of data and controls as in (11), so that: 

(13) 𝑇𝑖,𝑡,𝐷 = 𝜏𝑖 + 𝜑𝑆𝑡,𝐷 + 𝜌′𝑋𝑡,𝐷 + 𝜖𝑖,𝑡,𝐷 

                                                           
22 A further minor issue is that an increase in demand may have an ambiguous effect on density due to the presence 

of multiple equilibria when the road supply curve is backward-bending. Nevertheless, as we demonstrate below, 

hypercongestion happens seldom in our data and multiple equilibria unlikely (see footnote 54). 
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where the coefficient 𝜑 captures the marginal effect of public transit share, 𝜕𝑇/𝜕𝑆.23 We 

estimate (13) using weighted regression where the weights are proportional to the (hourly) flow 

per road to make the estimated 𝜑 representative for the average motor-vehicle traveler in our 

sample and cluster standard errors by hour.24 In a sensitivity analysis, we will examine to what 

extent 𝜑 depends on the level of public transit supply S. In a similar way, we estimate the 

marginal effect of public transit share on motor-vehicle travel flow 𝐹𝑖,𝑡,𝐷 , hence, 𝜕𝐹/𝜕𝑆. 25 

   

4. Data 

4.1 Rome 

Rome is Italy’s capital and largest city, with a population of 2.9 million inhabitants (4.3 million 

including the metropolitan area). The city belongs to the Lazio region, and includes more than 

80% of the region’s population. The city is densely populated and essentially monocentric 

around the ancient core. Rome’s street network is largely based on the ancient Roman plan, 

connecting the center to the periphery with primarily radial roads that get narrower as one 

approaches the center. The city is heavily dependent on motorized travel: 50% of trips are by 

car and an additional 16% by motorbike/ scooter. Roughly, 28% of all annual trips take place 

by public transport, similarly to other large European cities such as Paris and Berlin. In the 

metropolitan area of Rome there are 1.65 billion motor vehicle trips per year, equivalent to 21.5 

billion passenger kilometers or 14.5 billion vehicle-kms, 42 percent of which takes place during 

peak hours (using information from Citta’ di Roma, 2014).26 The rest of the trips take place 

either by walking or by bicycle. The city is one of the worst performing European cities in terms 

of air pollution and road congestion. The average speed on inner-city roads can be as low as 

15km/h on weekdays. 

 

Table 1 – Descriptives for the Rome metropolitan area  

    Car Bus Rail 

    Peak Off- Peak Off- Peak Off- 

                                                           
23 The week fixed effects in this specification also control for the effect of a substantial public transit fare increase 

in May 2012. To control for unobserved factors that vary between days, we will also estimate models with day 

fixed effects.  
24 In the sensitivity analyses, we demonstrate that our results do not depend on the way we cluster standard errors. 
25 One substantial public transit fare increase took place during our period of observation. This allows us to estimate 

the effect of a public fare change on motor-vehicle travel time using a discontinuity regression approach. We use 

this estimated effect as a robustness analysis and as input for welfare analysis. 
26 According to the Rome municipality, 376,024 motor-vehicle trips take place during peak hours. We assume 252 

working days per year, 7 peak hours and 9 off-peak hours per working day, whereas each non-working day has 16 

off peak hours. Further, the number of trips during off-peak hours is assumed to be two thirds of the number in 

peak hours. We get then 1,685,599,000 trips per year. We assume an occupancy of 1.4 (1.51) passengers per 

vehicle in peak (resp. off peak) hours). To obtain the quantity of passenger-kms, we multiply annual trips by the 

average trip length of 13km as reported by the Rome municipality (PGTU, 2014). 
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         Peak   Peak   Peak 

Annual veh-kms, millions 6,116 8,445     

Annual passenger kms, millions 8,623 12,837 3,403 2,304 1,639 628 

Vehicle occupancy (pass-km/veh-km)   51 34 160 87 

          

Operating cost, €/veh-km   10 5 29 17 

Fare, €cents/pass-km    5 5 5 5 

Subsidy, % of average operating cost   75 69 74 76 

Generalized price, €cents/pass-km   34 40 25 27 
Source: own calculations based on information for the year 2013, from Rome’s General Traffic Plan (PGTU, 2014). 

 

The rate of motorization is high for a large European city, with 67 cars and 15 

motorcycles per 100 inhabitants (about double the figures for Paris and London). There are 1.6 

cars per household. The high car ownership rate combined with substantial public transit use 

suggests that many regular transit users have access to a private vehicle, and are potentially able 

to switch mode in the event of a transit strike. 

Rome has a restricted access zone for motorized traffic, called ZTL (Zona a Traffico 

Limitato).27 This restricted access zone is a small part of Rome’s historic center where car 

inflow is restricted to permit holders who can enter during certain hours of the day. Permits are 

mainly for businesses and government officials. We observe the inflow and outflow of vehicles 

for this zone, but have no information about traffic within the zone.28 

 

4.2 Public transit in Rome 

Public transit accounts for about 8 billion annual passenger kilometers in Rome, i.e. roughly 

27% of total travel (ATAC SpA, 2013). The lion’s share of public transit supply is through 

buses (about 70% in terms of vehicle-kms as well as passenger-kms) see Table 1. Annual 

subsidies to public transport amount to €1.04 billion, i.e. is approximately 72% of annual 

operating of costs (€1.56 billion in 2013). The average operating cost per trip is about €0.90 

(i.e., €0.08 per passenger kilometer) and the price of a single ticket is €1.50.  

The provision of public transit services in Rome is assigned to a large provider, ATAC 

SpA (almost entirely owned by the Rome municipality), and several much smaller bus 

companies, operating under the banner of Roma TPL. ATAC covers approximately 90% of the 

transit market, operating about 360 bus and tramlines, with a fleet of 2,700 buses and 165 trams. 

                                                           
27 Restricted access is not new to Rome’s historic center. In the 1st century BC, Julius Caesar banned wheeled 

traffic from entering Rome during the first ten hours of daylight (Cary, 1929). 
28 The city lifts restrictions on strike days, but the zone´s vehicle in- and outflow is less than 1% of all trips in the 

city. This suggests that the effect of the latter policy on average travel time within the city is small. 
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It also operates three metro lines with 83 metro carriages, and three train lines connecting Rome 

with the region of Lazio.29 See Table 2.  

 

Table 2 – Public transit stock in Rome 

Public transit company Buses Metro (cars) Train (cars) Employees 

Atac SpA 2,700 (+165 trams) 83 55 11,696 

Roma Tpl Scarl 450   839 

Total  3,315 83 55 12,525 

Note: Information for ATAC refers to the year 2015. For Roma TPL the data refers to the year 2011. 

 

4.3 Transit strikes in Rome 

Information on strikes is provided by the Italian strike regulator (Commissione di Garanzia per 

gli Scioperi). Due to the availability of traffic data (see below), our period of observation spans 

from January 2nd 2012 to May 22nd 2015, i.e. 769 working days. There are 43 public transit 

strike days during this period.30 27 of these strikes took place only in Rome (and possibly the 

Lazio region), whereas the other 16 are part of national strikes that possibly affected other 

transportation modes, e.g. aviation.31 We do not distinguish between which providers are 

affected by the strike.32 There is a strike on 6% of the days on our observation period – strikes 

are a frequent occurrence in Rome. This observation is relevant, because strike frequency may 

increase the likelihood of car ownership, and thus the elasticity of demand responses during 

strikes.  

All strikes in our data were announced to the public several days in advance. Seven were 

partially cancelled (by one of the participating unions). We refer to the latter as semi-cancelled 

strikes in the sensitivity analysis (in Appendix A). An additional three announced strikes were 

fully cancelled shortly before taking place. We will refer control for the cancelled strike days.33 

                                                           
29 The number of metro lines is exceptionally low for a European city of comparable size. Archeological 

excavations and financial issues have historically hindered construction. The third metro line (Metro C) is partly 

operational since June 2015, which is outside our observation period. 
30 Strike activity is distributed about equally over the years with at least 7 strikes a year. We ignore 7 additional 

strikes which occurred on days where traffic data is insufficient. Strikes are usually due to workers’ grievances 

due to unpaid wages.  
31 Two of the strikes fall into a white-strike period (between the 7th and the 27th of June 2014). White strikes refer 

to a labor action whereby bus service is reduced through strict adherence to the providers’ service rules (e.g., bus 

maintenance periods, boarding regulation and ticket controls). 
32 Strikes of different public transit providers usually coincide see Figure A3 in the Appendix (possibly because 

unions are not firm specific and overlap multiple providers). Hence, we may ignore which provider is affected 

although these firms operate in different geographical areas. 
33 We do not find any effect of these cancelled strikes on motor-vehicle travel time. Given an estimation strategy 

based on public strike days, it is useful to interpret the effect of the cancelled strikes as a placebo test. However, 

because our identification is based on public strike hours, and we include day fixed effects, the placebo test is 

redundant. 
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Italian law does not allow full transit service shutdowns during strikes, mandating a high 

minimum service level during peak hours. Consequently, the strikes we observe are partial, in 

the sense that a positive share of service is always provided. Moreover, regulation forbids (with 

rare exceptions) strikes during holiday months, i.e. in February, August and most of September. 

Excluding these months, the distribution of strike activity is quite even over the year, with 

somewhat higher concentration in the spring period (see Figure A1 in Appendix A). Most 

strikes take place on Mondays and, in particular, Fridays (see Figure A2 in Appendix A). We 

do not observe strikes on weekends, so we exclude all weekends from our analysis (regulation 

restricts striking on weekends). We also exclude nighttime hours because there is no public 

transit service between midnight and 5am.34  

In contrast to earlier studies on transit strikes (Anderson 2014, Bauernschuester et al. 

2015, Adler and van Ommeren 2016), we have information about hourly strike intensity. 

Specifically, Rome’s Mobility Agency (Agenzia per la Mobilita’) provided us with the share of 

scheduled service (based on the regular schedule during non-strike days) that actually took 

place during strike hours. This implies that we can exploit hourly variation in the share of 

available public transit for identification purposes. We use information on this share at the city 

level: we do not observe service provision on each particular segment of the network.35  

 

Figure 4 – Public transit share for strikes  Figure 5 –Public transit share per strike hour 

 

 

                                                           
34 Public transit fare prices are constant during our period of observation except for one major change in May 2012. 

We will use this fare change to derive the price elasticity demand for public transit as well as the cross-price 

elasticity for car travel. 
35 This feature of the data is of little importance to our study. During strikes, the public transit agency allocates 

available buses to the most important lines (those serving the largest volume of passengers). In all likelihood, the 

agency would behave similarly if it had to reduce service permanently, e.g. due to budget cuts. Furthermore, we 

expect transit users to change to other bus lines during strikes. Because we are interested in the effect on traffic at 

the city level, observing which lines are affected is not crucial.    
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During strike hours there are, on average, 839 buses/trams operating, in comparison to 

1,496 buses/trams during non-strike hours. There is substantial variation in the hourly share of 

public transit available during strikes, as can be seen in Figure 4. This share varies between 

0.05 and 0.83, the average being 0.56. Note that we observe relatively few strike (peak) hours 

with low intensity due to the regulatory scheme mentioned above. In Figure 5, we provide the 

range and three quantiles for the distribution of transit available share distribution over the the 

day. The median share is highest during the 8 a.m. morning peak (about 0.75) and the 7 p.m. 

evening peak hour (about 0.65). During these hours, the variation in the share is also small. 

From 9 a.m. to 3 p.m., the share is not only substantially lower, but the range in the share is also 

much higher.  

We also have information on the scheduled service level (i.e., the number of buses 

operating per hour) for five main bus lines on non-strike days.36 Assuming that the other bus 

lines follow the same schedule, it appears that the total number of operational buses in Rome 

does not vary between 8am and 5pm except when there are strikes (Figures A4 and A6 in 

Appendix A), supporting the use of strikes as a way of identifying the effects of public transit 

supply. 

 

4.4 Motor-vehicle traffic data 

Our data on motor vehicle traffic is provided by Rome’s Mobility Agency. It contains 

information on hourly flow and travel time for 33 measurement points in Rome, for a period 

from the 2nd of January 2012 to the 22nd of May 2015.37 Motor vehicles are cars, commercial 

trucks and motorbikes, as the measurement stations do not distinguish between these types of 

vehicles. 

The measurement locations, chosen by the Agency, include twelve one-lane roads – all 

located in the city center and with a speed limit of 50km/h (1.2 min/km). The other 21 roads 

contain two lanes. These include seven large arterial roads with a speed limit of 100 km/h (0.6 

min/km), eight with speed limits between 60 and 100 km/h and six with the speed limit of 50 

km/h. Information from the measurement locations is sometimes missing (meters are 

sometimes malfunctioning). During some hours, we have information from only a couple of 

measurement locations. To avoid identification based on a few measurement locations, we only 

                                                           
36 See http://www.atac.roma.it/page.asp?p=18. 
37 See Figure A5 in the Appendix for a map of the measurement locations. We also have information on eleven 

additional measurement locations. However, we ignore them because they are either too close to traffic lights 

(hence provide unreliable information on flow) or present extreme variation in flow over the period observed. This 

variation is likely due to malfunctioning of loop detectors or road supply shocks (e.g., closure of lanes). 
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include hourly information from a measurement location when at least 19 other measurement 

locations are observed in our data (we exclude 2.2 percent of total observations).  

We measure flow in number of motor vehicles per minute per lane and travel time in 

minutes per kilometer. We calculate density based on the observed flow and travel time. This 

means that density is measured in number of motor vehicles per kilometer. We exclude extreme 

outliers.38 In total, we have 422,691 hourly observations for motor vehicle flow, density and 

travel time.39 We give descriptive information in Table 3. Approximately five percent (23,018) 

of these observations is during strikes.  

On average, travel time is roughly 1.3 min/km, which implies that the average speed is 

approximately 50 km/h. Note that this average speed is far above the average speed of a trip, 

mainly because we exclude waiting time near traffic lights and extremely congested roads in 

the inner-city. Hence, if anything, we underestimate the presence of congestion. Furthermore, 

in our data, flow per lane is above 11 vehicles per minute and density is about 13 motor vehicles 

per kilometer. The distributions of travel time, flow and density can be found in Figures A7 to 

A9 of Appendix A.40  

 

Table 3 – Average values, travel time, density and flow  
 Travel time Density Flow Obs. 

Strike 1.365 14.6 11.1 23,018 

No strike 1.327 13.4 10.5 399,673 

Total 1.330 13.5 10.6 422,691 

Note: Travel time in minutes per kilometer; density in vehicles per kilometer; flow in vehicles per minute per lane. 

 

In Figures 6 and 7, we provide information about average travel time and density by 

hour of the day (information about average travel flow by hour of the day can be found in 

Appendix A, see Figure A10). These figures indicate that on average travel time, density and 

flow are higher during strikes.41 In these figures, we single out intensive strikes – whereby the 

public transit available share is below 0.5. Travel time, density and flow appear systematically 

larger during intensive strikes. Figure 3 also shows clearly that during peak hours the increase 

                                                           
38 We drop few observations when travel time either exceeds 5 min/km or is below 0.4 min/km, when flow is zero 

or exceeds 2,100 vehicles per hour. The results are robust to the inclusion of these outliers. 
39 Information on the month of August 2012 and a few other days are missing. August 2012 is missing, because 

the data collection agency moved office in this month. The few other days are missing for unknown reason. 
40 We weigh all descriptive statistics for travel time by flow, as we are interested in the travel time per motor-

vehicle. 
41 It is possible that the composition of motor vehicles changes during strikes, which causes additional welfare 

losses. Anecdotal evidence suggests that public transit users in Rome tend not to have access to 

motorcycles/scooters (which are mainly used by relatively young travelers, independently of traffic conditions). 

However, most transit users do have access to cars, so the increase in flow is likely predominantly due to cars.  
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in travel time is substantially larger, implying that the marginal effect of public transit strikes 

is higher during these hours. Not surprisingly, the figures also indicate that traffic flow, density 

and travel times are larger in peak than in off peak hours. Travel time, flow and density are 

respectively 13, 38 and 50 percent larger during the peak. 

 

Figure 6 – Travel time by hour of the day  Figure 7 – Density by hour of the day 

 

 

The above figures provide information for average traffic conditions, and thus mask 

substantial differences between roads. Several of the effects we measure below, e.g. the 

congestion relief effect of public transit may differ between roads because of differences in 

their congestion level. Hence, it is useful to classify the road in our sample accordingly. We 

define a road as heavily congested during a certain hour when the speed on that road is less than 

60 percent of free-flow speed, defined by the 95 percent percentile of the speed distribution 

observed on that road. Using this definition, roads in our sample are heavily congested about 

one hour per day, or 5 percent of the time. However, there is extreme variation between roads. 

Figure 8 shows for all roads the average number of hours per day that a road is heavily 

congested. In the figure (and in the empirical analysis below), we single out 10 “heavily-

congested” roads, defined as such because they are heavily congested (according to our 

definition above) at least one hour per day.42 On average, these 10 roads are heavily congested 

three hours per day.  

In theory, a road is hypercongested when, for given flow, the travel time lies on the 

backward bending portion of the supply curve. In Figures 9 and 10, we depict the travel time-

flow curve for, respectively, a road that clearly shows signs of hypercongestion and for one 

where hypercongestion is absent. However, in practice it is not always clear for each hourly 

                                                           
42 The same 10 roads show a backward bending relation between travel time and flow, indicating the presence of 

hypercongestion for some hours.  
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observation whether the road is congested or not. To illustrate, consider the road in Figure 9 – 

which clearly exhibits hypercongestion – and focus on observations of flow around 25 motor 

vehicles per minute, but where travel times are in between the (to be estimated) backward-

bending supply curve. It is a priori unclear whether these observations refer to hours where the 

road is congested or hypercongested. 

 

Figure 8 – Daily number of heavily congested hours per road (33 roads) 

 

 

To deal with this issue, we define a road as hypercongested in a given hour if and only 

if traffic density exceeds the level associated with maximum flow (formally defined as 𝐷̅, see 

expression (3) in Section 2.1). For each road, we calculate this level using our estimates of the 

travel time-density relationship on an hourly basis (see Section 5.1 below). Note that this 

definition implies that if a road is hypercongested for only a couple of minutes during a certain 

hour, we do not consider it as hypercongested. Hence, we most likely underestimate the 

pervasiveness of hypercongestion. Note also that the above definition of ’heavily congested 

road’ does not imply that a road is hypercongested. Traffic on a road may be very slow on a 

given hour for reasons not directly related to density (e.g., because a high share of cars cruises 

for parking). However, all roads that we identify as hypercongested in a given hour also turn 

out to be heavily congested. 

 

Figure 9 – Hypercongested road   Figure 10 – Congested road 
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Finally, note that we estimate specifications which assume that the logarithm of travel 

time is a linear function of density. In the Appendix (Figure A12) we show this relationship for 

the same road depicted in Figure 9. The figure indicates that this assumption is reasonable. A 

similar conclusion applies for the other roads in our sample. 

 

4.5 The effect of road congestion on bus travel times 

The Rome Mobility Agency provided us with information on the in-bus travel time. 

Specifically, we observe the hourly average travel time of buses for the 19 hours in a day --

from 5am to midnight— where transit service is active, from 2012 to 2015. This average is 

computed on a yearly basis, distinguishing hours per the service schedule. There are six 

different service schedules in a year: one for weekdays, one for weekends and one for festive 

days during the schoolyear period (from September to May) and three corresponding schedules 

for the summer period (from June to August).43 We have a total of 380 hourly observations.  

 

Figure 11 – Travel times of public and private motor vehicles 

                                                           
43 For example, one observation is the average bus travel time from 11am to 12am for weekdays from January 

2012 to May 2012 and from September 2012 to May 2013. Another observation is the average travel time from 

11am to 12am on weekends over the same period, and so on. Information for August 2012 and the second half of 

2015 is missing. 
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The average bus travel time is 2.79 minutes per km, twice the average travel time of 

private motor vehicles. Because buses rarely travel on dedicated lanes in Rome, we expect 

travel times of public transit and motor vehicles to be strongly correlated. Figure 11, where we 

plot the hourly observations of bus travel time and motor vehicle travel time, confirms this 

expectation. The data indicate a correlation of 0.79 between these travel times. Furthermore, a 

one-minute increase in motor vehicle travel time is associated with an increase in bus travel 

time of 2.8 minutes.44 Consequently, higher congestion levels imply much larger time losses 

for bus travelers than for motor-vehicle travelers. This suggests that the external congestion 

costs on bus travelers may be substantial. We examine this issue below. 

 

                                                           
44 This effect is so pronounced, because i) bus speed appears almost one-to-one related to motor-vehicle speed, ii) 

average bus speed is much less than average motor vehicle speed; iii) the marginal effect of speed on travel time 

is equal to minus the inverse of speed squared. 



26 
 

5. Empirical Results 

5.1 Welfare losses of road congestion 

5.1.1 Travel time losses of motor-vehicle travelers 

To estimate the marginal external cost of congestion through travel time losses of motor-vehicle 

travelers, we first estimate the effect of motor-vehicle density on travel time of motor-vehicle 

travelers. In column 1 of Table 4, we provide the results assuming a linear effect of density on 

log travel time (see (12)). We find that a marginal increase in density (one vehicle per kilometer) 

increases log travel time by 0.024. Hence, increasing density (per lane) by one vehicle increases 

travel time by approximately 2 percent. When we estimate the same model with 2SLS using 

the share of available public transit as an instrument, we find a smaller effect of 0.020 see 

column 2 (the instrument is strong, with an F value above 100). This implies that the OLS 

estimates provide a non-negligible upward bias of almost 20 percent, as anticipated in Section 

3. 

To examine whether the above specification is restrictive, we also include a quadratic 

term of density in the estimation for column 3. As is suggested by the negligible increase in the 

R2, a quadratic approach does not fundamentally change the results. When we account for 

endogeneity of density given the quadratic specification, by applying a control-function 

approach (column 4), we again find a smaller effect of density implying that OLS provides an 

upward bias.  

 

Table 4 –Log travel time 

 (1) (2) (3) (4) 

 OLS IV OLS IV 

Density 0.0238*** 0.0202*** 0.0268*** 0.0177*** 

 (0.000101) (0.000959) (0.000388) (0.000719) 

Density2    -0.0000425*** -0.0000653*** 

  (0.00000631) (0.00000241) 

Number of Obs. 422,691 422,691 422,691 422,691 

R2 0.925  0.925   
Note: The dependent variable is logarithm of travel time. Controls are included but not tabulated. The hourly strike intensity 

is the instrument for IV. Robust standard errors clustered by hour-of-day in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 

We then re-estimate the linear specifications for each road separately, allowing the 

effect of density to be road specific. This approach is preferable, because the travel-time density 

relationship may depend on road characteristics such as maximum speed limit, distance to 

upstream bottlenecks etc. These road-specific estimates are available upon request. Table 5 

reports the average results. In the OLS specification, for each road, the effect is positive, with 

an average effect of 0.024 (see Table 5). Note that the standard deviation of this effect is about 

0.01, supporting the idea that the estimated effects differ between roads.  
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Table 5 –Log travel time, road-specific estimates of density 

 (1) (2) 

 OLS IV 

Average effect of 

density 

0.0224 0.0181 

Standard deviation of 

effect of density 

(0.00934) (0.0110) 

Number of Obs. 422,691 321,687 
Note: We estimate the marginal effect for each road separately given controls and then report the average as well as the 

standard deviation of the effect of density. 

 

Concerning the IV specification, we have examined the instrument’s strength for each 

road separately. For all but five roads (i.e. about ninety percent of the roads in our sample), the 

F-test far exceeds the recommended value of 10.45 The estimated effect of density is positive 

for 25 among the 28 remaining roads, whereas it is negative for three. This finding is, in our 

view, not particularly worrying for a number of reasons. First, because we have a large number 

of estimates, random variation is likely to result in a few estimates with the wrong sign. Second, 

the F test for weak instruments of these three roads is substantially lower than for the other 

roads that generate positive effects, which is unlikely to be accidental. Third, the OLS estimates 

of these three roads indicate small positive effects. Finally, the logic of our instrument, i.e. 

strikes do not directly influence travel time of motor vehicles, may not hold for a few roads 

because the ratio of buses to cars is much higher than for the average road (recall that this ratio 

is about 1 percent). 

The second column of Table 5 reports the IV results for the 25 roads with the positive 

coefficient and a strong instrument. We find that the average effect of density is about 0.018 

(including those with a negative coefficient reduces the average estimate to 0.015). Again, the 

OLS estimates are severely upward biased, by about 30 percent.46 This upward bias is also 

statistically significant for most roads: for 20 of the 25 roads, the Hausman t-test exceeds two 

(in absolute value). As discussed in Section 3, measurement error in travel time is most likely 

one of the main reasons for this bias.47 

We use the IV estimates to predict each road’s supply curve – i.e. the travel-time flow 

relationship – as explained in Section 2.1. Figure 9 provides an example of such prediction for 

                                                           
45 See the discussion in Wooldridge (2002, page 105). For the roads where the instrument is weak, the test is equal 

to 1, 2, 4, 6, and 8 respectively. For these five roads, the Hausman t-test (Wooldridge, 2002, page 120) is less than 

two (in absolute value) suggesting that the OLS and IV estimates are statistically equivalent. 
46 This conclusion holds even more if we include all 33 roads. The IV effect is then about 33% lower.  
47 Our finding of an upward bias of about 30 percent is consistent with a lognormal distributed measurement error 

in travel time with a standard deviation equal to 10 percent of the standard deviation of log travel time. 
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one road (black line). The predicted travel-time flow relationship is backward-bending, in line 

with empirical traffic studies (Helbing, 2001; Geroliminis and Daganzo, 2008).48  

Based on these estimates, we calculate when hypercongestion occurs on the roads we 

observe. Given our specification that 𝑇 = 𝛽𝑒𝛼𝐷 , hypercongestion occurs when D > 1/α, where 

α is the estimated effect of density on log travel time (see expression (3) above). Our estimates 

imply that hypercongestion occurs in about 2 percent of the time, on average. Given our 

observation (see Section 4.4) that roads are about 5 percent of the time heavily congested, it 

turns out that about 40 percent of roads that are heavily congested are also hypercongested. 

During the morning peak hours, however, the proportion of hypercongested roads is higher: 

about 60 percent of heavily congested roads are hypercongested (see Figure A11).   

Table 6 summarizes the main results of this section.49 The first column reports the main 

measures describing the observed traffic conditions. These are averages over all road-hour pairs 

in our sample and include the MEC (computed only for the hours where roads are not 

hypercongested). This measure is useful for defining policies to make small incremental 

reductions in traffic. It shows that the marginal external time cost of a motor-vehicle travelling 

one km is about 0.53 minutes on average.50 Assuming a value of time equal to 15.59€/h,51 this 

external cost is €0.137 (0.53*15.59€/60).  

 

Figure 12a and 12b – Deadweight loss avoided when moving from congested (left panel) and 

hypercongested (right panel) equilibrium to the optimal allocation. 

                                                           
48 These results are also in line with simulation studies (e.g., May et al., 2000; Mayeres and Proost 2001; Newbery 

and Santos, 2002). 
49 For computational reasons, we perform these calculations based on a 10% random sample of our set of 

observations. 
50 We report here the weighted average of the marginal external time cost for a road, using the flow per road as 

weight.  
51 This is the median value of time for car users in Milan, the second-largest city in Italy, reported by Rotaris et al. 

(2010). We did not find a corresponding value for Rome. 
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We now describe how we compute the welfare losses of (hyper)congestion. The first 

step is to characterize the demand function for travel. Rather than attempting to estimate this 

function, we assume that travel demand on a given road r is linear, with the following 

specification: 𝑇 = 𝜏𝑟,ℎ +  𝜑𝐹. Observe that demand for all roads has the same, time-invariant, 

slope 𝜑. We let the intercepts  𝜏𝑟,ℎ  vary by hour and road. The value of these intercepts can be 

calculated given the assumption that, on a given road-hour pair, the market is in equilibrium. 

Given 𝜑, T and F, one calculates 𝜏𝑟,ℎ .In the following, we consider the case where 𝜑 = 0, i.e. 

a horizontal inverse demand function, and negatively-slope demands with 𝜑 = -0.1, -0.3 or -2. 

The implied corresponding average demand elasticity are then either minus infinity, -1.5, - 0.5 

or -0.07. Hence, we consider a rather broad spectrum of demands spanning from perfectly 

elastic to almost perfectly inelastic.  

The next step is to characterize the optimal equilibrium – in terms of density, flow and 

travel-time – corresponding to each observed equilibrium (per hour and road).52  To do so, we 

combine the information on demand with an estimate of the road-specific road supply curve 

using the IV estimates in Table 5. Optimality requires that marginal benefit equals marginal 

social cost. Hence, in the optimal equilibrium, 𝜏𝑟 +  𝜑 F = 𝑇 + 𝑀𝐸𝐶 must hold. Given 𝑇 =

𝛽𝑒𝛼D, and MEC=αD T /(1 - αD), density can be found by numerically solving the following 

equation: 

(14) 𝜏𝑟 +  𝜑 (D/ 𝛽𝑒𝛼D)  = 𝛽𝑒𝛼D  +  αD 𝛽𝑒𝛼D /(1 −  αD) 

                                                           
52 When the road supply curve is backward bending, multiple equilibria can occur, as the equilibrium may lay 

either on the congested or the hypercongested part of the road supply curve (see Figure 12). However, multiplicity 

arises only if the inverse demand function is steeper than the downward sloping part of the (inverse) road supply 

function. In our data, for the supply function, the implied travel time elasticity with respect to flow given the 

presence of hypercongestion is about -5, so the inverse supply function is very steep in the hypercongested part. 

Hence, multiplicity appears to be rather unlikely. 
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Given the value of the optimal density, we calculate the corresponding optimal travel time and 

flow.  

Finally, we calculate the welfare improvement of inducing a shift from the observed 

equilibrium to the optimum. This improvement can be decomposed in two parts: the change in 

total consumer benefits (the area under the inverse demand function and above the equilibrium 

travel time) and the change in total cost (optimal flow times the difference between average 

time in the optimum and in the equilibrium). Figure 12a provides an illustration for a 

downward-sloping demand function, given an initial equilibrium where the road is not 

hypercongested. Note that the change in consumer benefits is negative, because flow is reduced. 

Figure 12b provides an illustration of the welfare improvement given an initial equilibrium 

where the road is hypercongested. The optimal equilibrium cannot lie on the hypercongested 

part of the supply curve (see Section 2.1). Observe further that, as shown in the figure, it is 

possible that consumer benefits increase when starting from the hypercongested equilibrium, 

because flow increases. 

In Table 6 (columns 2 to 5) we report the results for different values of 𝜑. On top of the 

quantities describing traffic conditions in the optimum (rows 1 to 3), we report the marginal 

external (time) costs of one additional motor vehicle-km. We also report the overall welfare 

gain of a policy intervention that eliminates excessive congestion (thereby moving to the 

optimal equilibrium), expressed in vehicle-minutes per kilometer per road lane. Note that these 

are average values for all roads-hour pairs in our sample. We decompose the above welfare gain 

into the change in consumer benefits and in travel time costs. Moreover, we single out the share 

of the overall welfare gain that comes from removing hypercongestion only. Finally, we 

compute the average welfare gain of shifting from a hypercongested equilibrium to the 

optimum. 

For brevity, we discuss the results in detail only for the case where 𝜑 = − 0.1. As shown 

in Table 6, density decreases when moving from the observed to the optimal equilibria. The 

average reduction in density is substantial: from 13.49 to 10.38 vehicles per km per road lane 

(that is, about 25 percent). Average travel time falls from 1.33 to 1.26 min/km, i.e. about 5 

percent. This reduction may seem small, but the drop is very substantial on some roads. For 

example, for the road depicted in Figure 9, average travel time falls from 0.96 to 0.81 

minutes/km, i.e. about 15 percent. In addition, we see from Table 6 that the average flow 

decreases by about 15 percent. The induced welfare gain (per minute per kilometer per road 

lane) is equal to 1.05 vehicle minutes. This value equals roughly twice the marginal external 

cost as measured in the observed equilibrium, i.e. about €0.26. This welfare gain comes into 
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existence because travel time costs fall by 3.68 vehicle minutes, whereas the consumer benefits 

fall by about 2.63 vehicle minutes. Finally, the average MEC computed in the optimum is equal 

to 0.18 min/km, i.e. about three times smaller than in the observed equilibria. In monetary terms, 

the MEC in the optimum is equal to €0.046 per km (0.18*15.59€/60).  This value is indicative 

of the optimal road toll. Obviously, it depends on the slope of the demand function: for example, 

when demand is almost perfectly inelastic (𝜑 = − 2) the MEC in the optimum is close to 0.5, 

i.e. almost equal to the average MEC in the observed equilibria. 

To provide a sense of the relevance of hypercongestion, we also calculate the welfare 

gain of a policy intervention that focuses only on the equilibria with hypercongestion (moving 

to the optimum). See the penultimate row in Table 6. Focusing again on the case where 𝜑 =

 − 0.1, we obtain that, despite that the roads in our sample are hypercongested only 2 percent 

of the time, about 35 percent of the overall welfare gain (0.37/1.05) can be obtained from 

optimal intervention only on roads that are hypercongested. This result depends to some extent 

on the assumed slope of the demand function. When the demand for travel is very inelastic, 𝜑 =

 − 2, about two thirds of the welfare gain (0.37/0.56) is due to the removal of hypercongestion. 

Nevertheless, even when the demand for travel is perfectly elastic, the welfare gain due to 

removal of hypercongestion is still equal to 17 percent of the overall welfare gain. 

 

Table 6 – Welfare changes: observed and optimal equilibria 

 Observed 
 

Optimal 
𝜑=0 

Optimal 
𝜑= - 0.1 

Optimal 
𝜑= - 0.3 

Optimal 
𝜑= - 2 

Density (veh/km-lane) 13.49 6.71 10.38 11.71 13.06 
Flow (veh-km/min-lane) 10.49 6.02 8.91 9.73 10.58 
Travel time (min/km) 1.33 1.20 1.26 1.29 1.31 
Hypercongestion 0.02 0 0 0 0 
MEC (min/km) 0.53 0.18 0.29 0.36 0.49 
Welfare gain (veh-min/km-lane)  1.38 1.05 0.81 0.56 
    change in travel time cost  -7.35 -3.68 -2.37 -1.04 
    change in consumer benefits  - 5.83 - 2.63 - 1.55 - 0.48 
    removing only hypercongested 
equilibria  

 0.24 0.37 0.34 0.37 

Welfare gain per hypercongested  
equilibrium 

 26.78 24.79 24.14 22.75 

Note: These are averages for all roads and all hours in our sample. Hypercongestion measures the share of time that a road is 

hypercongested. We compute the MEC for times when a road is not hypercongested. The welfare gains are expressed in vehicle-

minutes per kilometer of road lane. 

 

Confirming the above results, the last row in Table 6 indicates that the average welfare 

improvements are much larger on roads that are hypercongested. The average welfare gain on 

one road lane of one km length is equivalent to 25 vehicle minutes, so in monetary terms 

roughly €6 per minute. To put this in perspective, the hourly welfare gain of removing 
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hypercongestion is about €700 for a standard two-lane road segment of one km length 

(€6*60*2). The latter result hardly depends on the slope of the demand function. For example, 

when 𝜑 is equal to -2, so demand is essentially inelastic, the welfare gain is still equivalent to 

23 vehicle minutes. The reason for the relative invariance of the welfare gain with respect to 

the slope of the demand function is that, starting from an equilibrium with hypercongestion, it 

is possible to get substantial welfare gains even without reducing flow.53 

Up to now, we have assumed an isotropic road, rather than a road with bottlenecks. As 

an alternative, let us assume that roads have downstream bottlenecks (e.g., a road with four 

lanes becomes a road with two lanes) which creates queues before the bottleneck and therefore 

flows that are less than the maximum flow on the road 𝐹 ̅, but equal to the maximum flow of 

the bottleneck. According to the bottleneck approach, there are additional welfare losses during 

hypercongestion for motor vehicles that are temporarily in a queue. We have no information 

about the length of the queue, but the inflow into the road will be maximally be equal to 𝐹̅. 

Hence, we will proceed by assuming that the travel costs given hypercongestion are equal to 

𝐹̅𝑇 (rather than FT). Given this assumption, the welfare losses of hypercongestion are 16 

percent higher. In other words, our estimates of welfare gains of policies that remove 

hypercongestion will be 16 percent higher. Hence, our estimates of the welfare gains of 

removing hypercongestion are conservative if the bottleneck assumption is more appropriate. 

To complete the picture, we show the marginal external cost for the observed equilibria 

(excluding those with hypercongestion) in Figure 13, as well as the welfare gain of optimal 

policy per hour of the day, when 𝜑 =  − 0.1 in Figure 14. Not surprisingly, the MEC and the 

overall welfare gain fluctuate over the day and the welfare gains of reducing congestion are 

much larger during peak hours.  

 

Figure 13 – Marginal external cost   Figure 14 – Welfare gains  

                                                           
53 In Table 6, we have provided the marginal external costs, averaged over all road-hour observations. This masks 

uncertainty about the estimates of the marginal external cost for individual observations. To examine this, we focus 

on one observation for which density is 20 motor-vehicles per kilometer, flow is 20 motor-vehicle per minute and 

travel time is 1 minute per kilometer. Given the estimate and standard error of α, as provided in Table 4, (6) and 

(13) imply then that MEC is equal to 0.66 motor-vehicle minutes per lane with a standard error of 0.05. When 

density is 40, flow is almost 15 and travel time equals 2.7. MEC is then equal to about 20 with a standard error of 

1. Consequently, the standard errors of the individual estimates are usually quite small. 
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Taken together, the results of this section indicate that the welfare losses due to road 

congestion in Rome are substantial. However, some discussion of our results is in order. First, 

although we observe traffic data from many measurement locations that are quite evenly spread 

across the city, our sample may not be entirely representative of the road network in Rome. 

Second, we have to make assumptions on the underlying travel demand function, because our 

data does not allow us to provide a fully-fledged estimation. Third, we estimate road supply 

curves at the individual road level, and not at an area- or network-wide level. Hence, our 

estimates of the external costs do not account for the possibility of avoiding heavily-congested 

roads by using different links within the road network.54 A priori, this possibility has several 

implications. On the one hand, if individuals can reduce their travel time by, say, using 

secondary roads, we are likely to overestimate the average external costs of congestion. On the 

other hand, in a city like Rome, it is unclear to what extent drivers are able to avoid congested 

primary arteries without having to take substantial detours. In this case, the extra-vehicle 

kilometers may increase the aggregate travel time losses, implying that we are somewhat 

underestimating these costs. 

 

5.1.2 Travel time losses of bus travelers 

We now estimate the external cost of congestion of private motor vehicles on bus travelers. We 

start with the approach based on (9). This expression states that the ratio of the marginal external 

time cost to bus travelers and to motor-vehicle travelers equals  𝜃−1𝑁𝑃𝑇/𝐹 , where  𝑁𝑃𝑇/𝐹 is 

the number of bus travelers relative to the flow of motor-vehicle travelers, which is roughly 0.4 

                                                           
54 Akbar and Duranton (2016) provide citywide estimates of supply and demand functions for Bogota’, using 

information from travel surveys and Google Maps.  
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in Rome55, and where 𝜃−1denotes the marginal effect of motor vehicle travel time on bus travel 

time. We estimate 𝜃−1 by regressing bus travel time on motor vehicle travel time. The first 

column of Table 7 reports the estimate of a bivariate model. In the second column, we control 

for hour of the day, bus-schedule day and year. Given controls, we find that 𝜃−1 equals roughly 

two, so substantially higher than one, with a standard error of 0.1. Hence,  𝑁𝑃𝑇/(𝜃𝐹) is equal 

to about 0.80. To give an idea of the implied order of magnitudes, let us assume that the value 

of time of bus vehicle travelers is 60 percent of that of private motor-vehicle travelers.56 Then 

the marginal external cost to bus travelers is in the order of 40 to 50 percent of the marginal 

external cost to motor-vehicle travelers. Consequently, the marginal external cost to bus 

travelers is quite large. 

We also estimate the time losses to bus users via an alternative approach, based on  (10). 

This approach uses estimates of the marginal effect of motor-vehicle density on log bus travel 

time, σ, using the aggregated bus schedule times. Recall that we have 380 observations. We 

find that this marginal effect, given controls, is about 0.0188, see column 3 of Table 7. To 

examine whether this effect depends on the selection of the data, we have also estimated the 

effect of density on the log of motor-vehicle travel time, α. Given controls, we find that the 

effect of density on log bus travel time is slightly higher than the effect on log motor-vehicle 

travel time when using the same aggregated data (column 4), so if we assume that σ =α, we 

obtain a conservative estimate.57 Given that, on average, bus travel time, 𝑇𝑃𝑇, is about twice 

the motor-vehicle travel time, T, it appears that the marginal external effect of a motor-vehicle 

traveler through longer travel times of bus travelers is at least half of its effect through longer 

motor-vehicle travel times, according to (10).58 Hence, our alternative approaches provide 

similar results. Hence, the marginal external cost through travel time delays of bus users is 

about 0.05€/veh-km, i.e. roughly 30% of the overall marginal external cost (0.137+0.05 = 

0.187€/veh-km).  

 

 

                                                           
55 According to data provided by the city of Rome (PGTU, 2014), the average occupancy of buses is 42 passengers 

per veh-km. Given the average hourly motor-vehicle flow of about 600 and occupancy of 1.3, this value implies a 

flow of about seven  buses per hour per road (0.4*600*1.3/42). 
56 Focusing on the city of Milan, Rotaris et al. (2010) report a median value of time of €9.54/h for bus travelers 

and €15.59/h for car travelers. 
57 This effect is somewhat smaller than the effect presented in column (1) of Table 4, which uses less aggregated 

data. The downward bias of the estimates shown in Table 7 is to be expected, since aggregation is rather substantial 

which usually results in a downward bias. 
58 This result supports the simulation study of Basso and Silva (2014), which concludes that the marginal 

contribution of transit subsidies to welfare is much lower than that of reductions in road congestion through road 

tolls or separating bus lanes. 
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Table 7 – Bus travel time and motor-vehicle travel time  

 (1) (2) (3) (4) (5) (6) 

 Bus 

travel 

time 

Bus 

travel 

time 

Bus travel 

time (log) 

Bus travel 

time (log) 

Motor-vehicle 

travel time 

(log) 

Motor-vehicle 

travel time 

(log) 

Motor-veh. 

travel time 

2.792*** 1.996***     

 (0.106) (0.108)     

Density   0.0242*** 0.0188*** 0.0153*** 0.0169*** 

   (0.000621) (0.000896) (0.000360) (0.000486) 

Controls No  Yes No Yes No Yes 

N 380 380 380 380 380 380 

R2 0.646 0.941 0.818 0.965 0.859 0.955 
The dependent variable is bus travel time in min/km. Standard errors are robust. We control for hour, bus-schedule day and 

year. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

5.2 The congestion relief benefit of public transit 

We now turn to the congestion-relief benefit of transit. We first estimate the effect of public 

transit share on hourly vehicle flow and travel time.59 We include controls for location, weather 

conditions and hour of the weekday, week of the year and month of the year.60 These controls 

capture unobserved factors that affect traffic conditions and may be correlated with strikes. For 

example, unions may prefer to strike on certain days of the week to maximize the impact of 

their action. We also control for days with cancelled strikes. 

 

Table 8 –Flow 

 All roads  

(33) 

Heavily 

congested (10) 

One-lane  

(12) 

Arterial roads  

(7) 

Morning peak: Public 

transit share 

-1.07 

(0.20) 

*** -0.32 

(0.27) 

 -1.39 

(0.20) 

*** -0.49 

(0.36) 

 

Afternoon peak: 

Public transit share 

-0.83 

(0.12) 

*** -0.85 

(0.17) 

*** -1.10 

(0.15) 

*** -0.79 

(0.25) 

*** 

Off-peak: Public 

transit share 

-0.76 

(0.07) 

*** 0.86 

(0.09) 

*** -0.84 

(0.07) 

*** -0.80 

(0.13) 

*** 

         

Controls     

Location Yes Yes Yes Yes 

Hour-of-weekday Yes Yes Yes Yes 

Month Yes Yes Yes Yes 

Week-of-year Yes Yes Yes Yes 

Weather Yes Yes Yes Yes 

Observations 422,691 117,790 158,427 81,981 

R2 0.8354 0.8578 0.7141 0.8681 
Note: The dependent variable is flow expressed in veh/min/lane. Standard errors (in parenthesis) robust and clustered by hour. 

Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in column titles indicates the number 

of roads.  

                                                           
59 In the analysis of vehicle flow, we estimate weighted regressions, with weights proportional to the number of 

lanes. In the analysis of travel time, we estimate weighted regressions with weights proportional to the hourly flow. 
60 Hence, we include a dummy for each month in our dataset, interactions between week and year (169 dummies) 

and between hour and weekday (120 dummies).  
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Our main interest is in the effect of public transit supply on travel time. However, 

starting from the analysis of the effect on traffic flow (Table 8) facilitates the interpretation, 

because hypercongestion might diminish the effect of strikes on flow. We distinguish between 

the effects of public transit share during the morning peak, the afternoon peak and off-peak. We 

report the estimation for the entire sample (column 1), as well as for heavily-congested roads 

(column 2), for one-lane roads (column 3) and for large arterial roads (column 4).  In the 

morning peak, provision of transit services decreases traffic flow on average by 1 vehicle per 

minute (first row of Table 8). That is, about 9.6% of the average flow.61 The point estimates of 

the effects of public transit share are somewhat smaller during the afternoon peak and outside 

peak hours. In line with the idea that hypercongestion is relevant in Rome, the effect of public 

transit on flow in heavily-congested roads is statistically insignificant (Anderson, 2014, Small 

and Verhoef, 2007).62 

Table 9 reports the results of the estimation of the effect of transit supply on travel time, 

estimating (14).63 We find that public transit provision reduces travel time in peak morning 

hours by 0.245 minutes per km. The effect is substantially smaller during the evening peak 

(0.095) and off peak (0.065 min/km) in line with Figure 3. These are our main estimates that 

we will later use in the welfare analysis of Section 5.3. These estimates are significantly larger 

than the implied estimate used by Parry and Small (2009). However, although the effect is 

substantial, the estimate is smaller than that reported by Bauernschuster et al. (2016) and Adler 

and Van Ommeren (2016) for inner cities. There are at least two explanations for this finding. 

First, contrary to both studies, the effect we estimate relates to motor vehicles, i.e. cars and 

motorbikes. It is reasonable to assume that the effect of congestion on motorbikes is less 

pronounced. Because the latter have a peculiarly large modal share in Rome, the effect on motor 

vehicle travel time is most likely larger than the estimates reported in the table. A second 

explanation is the relatively low speed and high occupancy of buses, which provide most of the 

transit services in Rome. Therefore, public transit in Rome is a relatively unattractive alternative 

for travelers, suggesting that supply shocks due to strikes are likely to have a smaller effect on 

modal choice than in other cities. 

                                                           
61 We find similar effects when estimating the same model using log of flow as dependent variable (see appendix). 

This result is also in line with estimates for Rotterdam (Adler and Van Ommeren, 2016). 
62 We have excluded observations at night. During the night time, travel times and flows are essentially identical 

on strike and non-strike days, which can be interpreted as a placebo test of strike exogeneity (see Anderson, 2014).  
63 We have estimated the same model using the logarithm of speed as the dependent variable. The results are very 

similar. In the literature, it is common to use travel time because welfare effects of congestion are defined by travel 

time losses.  
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The effect of public transit share on travel time on heavily-congested roads is 

substantially larger than on the average road, particularly during the morning peak, where the 

point estimate is equal to -0.524 min/km (see column 2). Hence, increased demand for car travel 

when public transit supply is reduced produces strong increases in travel time on roads that are 

prone to hypercongestion (as there is little evidence of higher flows, see Table 3). By 

comparison, the travel time reductions on arterial roads, and in particular one-lane roads 

(column 4), are systematically lower than on the most heavily congested roads. Nevertheless, 

the effect of public transit in one-lane roads during morning peaks is still substantial in 

magnitude (- 0.136 min/km, column 3).  

These results are important, providing support to the main idea of Anderson (2014): the 

congestion relief benefit of public transit is much larger on congested roads, so studies that aim 

to estimate the effect of public transit on travel time employing a representative set of motor-

vehicle travelers will strongly underestimate the economic benefit of public transit when it is 

supplied in heavily-congested areas.  

 

Table 9 –Travel Time 
 All roads  

(33) 

Heavily congested 

(10) 

One-lane  

(12) 

Arterial roads  

(7) 

Morning peak: Public 

transit share 

-0.245 

(0.036) 

*** -0.525 

(0.079) 

*** -0.136 

(0.027) 

*** -0.370 

(0.074) 

*** 

Afternoon peak: Public 

transit share 

-0.095 

(0.021) 

*** -0.178 

(0.041) 

*** -0.041 

(0.017) 

** -0.076 

(0.035) 

** 

Off-peak: Public transit 

share 

-0.065 

(0.010) 

*** -0.115 

(0.021) 

*** -0.042 

(0.008) 

*** -0.054 

(0.018) 

*** 

         

Controls as in Table 8 Yes Yes Yes Yes 

Observations 422,691 117,790 158,427 81,981 

R2 0.5865 0.5291 0.8276 0.1656 

Note: The dependent variable is travel time, measured in min/km. Standard errors (in parenthesis) robust and 

clustered by hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in 

column titles indicates number of roads.  

 

Another way to demonstrate the importance of public transit during (morning) peak 

hours is to estimate hour-of-the-day specific effects of public transit share on travel time as well 

as flow. As shown in Figures 15 and 16, the negative effect of public transit share on travel time 

is particularly strong during peak hours, but the effect on traffic flow is (almost) absent during 

these hours, again consistently with the importance of hypercongestion. 

 

Figure 15 – Travel time     Figure 16 – Flow 
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We have also estimated models where we regress the presence of hypercongestion – as 

defined by our estimates in section 5.1.1 – on the public transit share using the same controls 

as in Table 8. We find that the effect is negative and equal to - 0.038. Given that, on average, a 

road in our sample is hypercongested about 2% of the time, this result suggests that removing 

the current supply of public transit would almost triple the pervasiveness of hypercongestion 

(to about 6% of the time per road). 

Taken together, these results imply that the beneficial effect of public transit supply on 

road congestion in Rome is far from negligible. Disruptions in public transit service during 

strikes produce positive demand shocks for motor-vehicle travel, particularly during the 

morning peak when hypercongestion is more likely to be present. As a result, travel time 

substantially increases suggesting a relevant congestion relief benefit of public transit.  

Note that the previous estimates provide a measure of the average congestion-relief 

benefit of public transit. However, to investigate the marginal congestion relief benefit, it is 

relevant to know whether the derived marginal effect is constant, i.e. to what extent the effect 

of public transit on travel time is linear. To investigate this issue, we have estimated several 

nonlinear models, which all suggest nonlinear effects, where the marginal effect is more 

pronounced for shares between 0.4 and 0.8 than between 0.8 and 1. However, statistical tests 

indicate that we cannot reject the linear specification hypothesis, i.e. that the marginal effect of 

public transit on travel time is constant.64 We come to the same conclusion when we focus on 

the effect of public transport on flow. We present here the results using a fifth-order polynomial 

of the public transit in Figures 17 and 18. 

 

Figure 17 – Travel time     Figure 18 – Flow 

                                                           
64 We have few observations with public transit shares that are either between 0.75 and 1 or less than 0.3, so the 

power of this test is low. 
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A possible criticism of the above analysis is that we use exogenous variation in the 

public transit share rather than exogenous variation in the public transit level. Note that we 

control for the scheduled service level by including hour of the day dummies. Furthermore, note 

that the scheduled service level is constant, with a supply about 1800 buses, between 9 a.m. and 

5 p.m. Hence, we have re-estimated the model for observations during these hours (177450 

observations). We find that then the standard errors are somewhat higher, but the results hardly 

change. For example, the estimated effect during peak hours is now -0.270 (with a standard 

error of 0.054), very close to the original estimate. Given this estimate, it appears that the 

marginal effect of a single bus during one peak morning hour on motor vehicles’ travel time is 

about -0.00015 minutes per kilometer (-0.27/1800). 

Finally, a reduction in public transit supply can be regarded as an implicit increase in 

the generalized price of public transit travel. In this perspective, one can compare the effect to 

changes in the fare. In our data, we observe one substantial fare increase (by 50 percent), taking 

place in May 2012. We have investigated the effect of this price increase on motor vehicle travel 

time as a robustness check. Our results indicate that an increase in public transit prices by 50 

percent increases motor-vehicle travel times by about 0.05 minutes per kilometer. The size of 

this effect is similar to a 20 percent reduction in public transit supply, which seems a reasonable 

result (see Appendix B for details). 

 

5.3 The long-run congestion relief benefit of public transit for Rome 

We now use the above estimates to quantify the overall congestion-relief benefit of public 

transit in Rome. According to our results, the marginal effect of public transit supply on road 

traffic is approximately constant. Hence, the short-run effect of a full shutdown of public transit 

services (consisting of 201 million vehicle-kms per year) results, on average, in 57 additional 

motor vehicles per hour per road lane during the peak and 45 additional vehicles off peak (see 
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Table 8). Furthermore, using the results of Table 9, it results in a 0.17 min/km increase in travel 

time in peak hours (averaging for morning and afternoon), and 0.065 min/km off peak. The 

(forgone) annual congestion relief benefit to motor-vehicle travelers is then about 38 million 

hours of travel time. Assuming that the value of time is 15.59 €/h, this benefit is valued at 

roughly €595 million.65 This is equivalent to about 38% of the total public transport operating 

cost (1.56 billion euros in 2013), and about 30% of the total external costs of congestion. Note 

that these values do not include the welfare losses of transit users. We summarize these findings 

in the first column of Table 10.  

 Based on the above estimates, we also consider the effect a 1% shutdown in public 

transit provision. This decrease costs €5.95 million in lost congestion relief benefits to motor-

vehicle travelers but also €2.3 million to bus travelers.66 The total loss due to extra congestion 

is thus 8.25 million euros annually, i.e. roughly 54 percent of the operating cost savings for the 

transit agency. We report these results in the second column of Table 10. 

Another interesting exercise is to compute the marginal congestion relief benefit of an 

additional bus. On the 33 roads analyzed here, there are about 500,000 motor-vehicle travelers 

in the morning peak who, let’s assume, travel on average 4 km on these roads, which is likely 

a conservative estimate. Hence, the marginal reduction in time delay is about 300 minutes. 

Assuming that the value of time is 9.54 Euros per hour, the marginal external benefit of a bus 

during peak hours is about 48 Euros. Given that there are about four morning peak hours, the 

external benefit of a bus during peak hours is at least 200 Euro per day.  

 

Table 10 – Congestion relief benefit of public transport, aggregate calculations 

  
Full shutdown 

Marg. shutdown  
(1% of total veh-km) 

Assumptions    

Annual veh-km, private motor vehicles 14. 5 billion 

Annual veh-km, public transport 201 million 

Travel time increase cars (peak), min/veh-km                 0.17 min/km               0.0017 min/km 

Travel time increase cars (off-peak), min/veh-km                0.065 min/km               0.00065 min/km 

Travel time increase buses (peak), min/veh-km          0.0034min/veh-km 

Travel time increase buses (off-peak), min/veh-km          0.0013min/veh-km 

Value of time of car travelers €15.59/h 

Average op. cost public transport, veh-km €7.76/veh-km 

                                                           
65 We multiply annual passenger-kms by private vehicles (see Table 1) by the estimated travel time increases in 

peak and off peak hours, and by the value of time. We assume that people who switch from private motor vehicles 

to public transit only benefit by half as much as people that already use public transit. Note that this measure does 

not include the loss of surplus to former transit users. 
66 Combining the results of Table 9 mentioned above with the results of Table 7, the effect of a 1% decrease in 

transit services results in excess travel time for buses is 0.0034min/veh-km in peak hours and 0.0013min/veh-km 

off peak. Table 1 indicates that there are 66.7 million veh-kms of bus service in Rome per year in peak hours 

(average occupancy 51 pax/veh) and 67.7 million veh-km off peak (34pax/veh). Therefore, we calculate an extra 

total travel time of 0.192 million extra hours of travel time for bus users in peak hours and 0.049 off peak. 

Assuming the value of time for bus travelers is 9.54 euros/h, we get a total extra loss of 2.3 million euros. 
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Results    

Public transit congestion relief benefit, year €595 million €8.25 million 

Operating cost saving, year €1.56 billion €15.2 million 

Subsidy reduction €1.03 billion €15.2 million 

Net congestion relief benefit (% of cost saving) 38% 54% 

 

An important caveat regarding the interpretation of these results is that they are based 

on short-run estimates, exploiting temporary service disruptions. Hence, one should apply some 

caution when using them to predict long-run effects of (permanent) changes in transit supply. 

In Rome, car ownership is very high and strikes are frequent, suggesting that travelers may 

respond to them in a way that is more similar to a permanent service reduction than in other 

cities. Thus, our estimates are more likely to approximate long-run effects than previous 

literature using a similar methodology (e.g., Anderson, 2014). It is plausible that the main 

difference between our estimates and long-term estimates is the possibility during strikes to 

cancel trips. Note that individuals who respond to strikes by canceling their trip likely have less 

leeway to do so in the long run and will switch to car use. Hence, long-run effects of reductions 

in supply on road congestion are most likely larger than indicated by our current estimates. 

Nevertheless, we emphasize that we do not capture the very long-run effects of transit supply 

changes, such as job, house and firm relocation, and maybe even the spatial structure of cities; 

hence, we interpret our estimates as only indicative of the long-run effects of changes in transit 

service. 

 

6. The effect of public transit subsidies given adjustments in public transit supply 

The results of the previous section suggest that the congestion relief benefit of public transport 

is substantial. Although this finding provides some justification for the volume of public transit 

subsidies in Rome, it does not imply that their current level is close to optimal. Subsidies may 

also have other justifications (e.g., economies of scale, environmental externalities) but also 

produce a price distortion. We have ignored these issues up to now. Furthermore, for a proper 

evaluation of public transit subsidies one has to consider possible adjustments in service by the 

transit agency, in response to (subsidy-induced) changes in demand. To provide more insight 

on whether the current subsidy level is justified, we use the model of Parry and Small (2009). 

In this model, travelers choose between three travel modes (private motor-vehicle, bus, rail) 

and two time periods (peak vs. off-peak), while the (welfare-maximizing) public transit agency 

chooses transit supply and fares subject to a budget constraint. This model has been calibrated 

for several cities (Los Angeles, London, Washington DC), but not for Rome. We calibrate its 
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parameters using our empirical estimates and data provided by the city of Rome (see Table C1 

in Appendix C for details).  

For consistency with our empirical analysis, we slightly adapt Parry and Small’s model 

as follows. First, we assume that motor-vehicle travel time is a function of density.67 

Specifically, we assume that 𝑇 = 𝛽𝑒𝛼D, with 𝛼 = 0.02 (this is the estimate from Table 4, 

column 2). Consistently with this assumption, we compute the marginal external cost based on 

MEC as provided in (6). Secondly, we include the marginal external cost of motor-vehicle 

traffic on bus users, using (10), with  
1

𝜃
= 2 (as estimated in Table 7, column 2).68 Finally, we 

calibrate the fare elasticity of transit passenger-kms using our own estimates and data provided 

by the city of Rome. This elasticity is 0.22 (see Appendix B for the derivation), which is rather 

low in comparison to the elasticities assumed by Parry and Small. However, given that transit 

fares in Rome are much smaller than in comparable European cities, low fare elasticity seems 

quite reasonable.69  

 

Table 11 – Parry and Small model for Rome: optimal public transit subsidies 

            Peak Off peak   
Marginal external cost, motor vehicle travel. €/veh-km 0.33 0.13   
   of which: on other motor vehicles travelers 0.21 0.09   
    on bus travelers  0.12 0.04   
            Rail Bus  

       Peak Off- Peak Off-   
        Peak  Peak   
Current subsidy, share of op. cost   0.76 0.76 0.74 0.69   
      Weighted        
Marginal welfare effects    Avg.         
Marginal benefit per €cent/pax-kma  0.10 0.31 -0.07 0.11 0.21   
   marginal cost/price gap -0.24 -0.38 -0.41 -0.34 -0.21   
   net scale economy  0.12 -0.02 0.21 0.04 0.31   
   externality  0.15 0.53 0.14 0.31 0.02   
   other transit  0.08 0.19 0.11 0.10 0.09   

Optimum subsidy, share of op. cost     >0.9 0.72 >0.8 >0.9   

Notes            
a This is the marginal welfare gain from a one cent reduction in the fare, in euros centsper initial passenger-km. 
b The subsidy for each time period and mode is optimized holding the others at their current values. 

 

 

                                                           
67 Parry and Small postulate a time-flow relation, whereby travel time is a power function of flow. 
68 We assume that there are on average six buses running on a road per hour and use the average peak and off peak 

occupancies of 51pax/veh and 34pax/veh respectively, according to data provided by the city of Rome. 
69 Our results do not change substantially when we use the elasticities assumed by Parry and Small. Note also that 

our data suggest an elasticity of private motor vehicle flow to transit fares of 0.1 (see Appendix B). Given that the 

own price elasticity of transit is 0.22, this value is roughly consistent with a modal diversion ratio from cars to 

transit between 0.4 and 0.5, as assumed by Parry and Small. 
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Table 11 reports the results. The top panel reports the marginal external congestion cost 

per motor vehicle kilometer, which equals €0.33/veh-km in peak hours, and €0.13/veh-km 

during off peak (see the first row of Table 11). These costs are the sum of the external costs 

imposed on motor vehicle drivers (€0.21/veh-km in peak hours, €0.09/veh-km off-peak), as 

well as the external costs imposed on bus travelers (€0.12/veh-km in peak hours, €0.04/veh-km 

off-peak). 

The bottom panel of Table 11 reports the marginal change in social welfare resulting 

from a marginal increase in the public transit subsidy (assuming this increase results in a fare 

reduction), starting from the current level. The reported “marginal benefit” is the marginal 

welfare gain from a one-cent-per-km reduction in passenger fare, expressed in cents per initial 

passenger-km. We decompose this effect into four components: (i) a welfare loss due to the 

increased gap between marginal production costs of producing public transit and public transit 

prices, (ii) a welfare gain due to additional economies of scale, (iii) a welfare gain due to a 

reduction in externalities (congestion and motor-vehicle pollution reduction) and (iv) the 

welfare benefit of diverting passengers from other transit modes for which the marginal social 

cost per passenger-km exceeds the fare. The marginal social benefit of a fare reduction is 

positive for rail and bus services, except for off-peak rail. The average marginal social benefit 

is equal to 0.1. This finding suggests that, despite their already substantial level, increasing 

transit subsidies is welfare improving. On average, an additional cent of subsidy brings roughly 

0.15 cents of externality-relief benefit, and 0.12 cents in scale economies.70 In addition, we find 

that in the optimum – in the absence of road pricing – subsidies should cover at least 72% of 

operating costs (bottom row in Table 11). 

 

7. Conclusion 

We estimate the marginal external cost of road congestion allowing for hypercongestion, i.e. 

when the road supply curve is backward bending. We use variation in public transit strikes to 

account for endogeneity issues. We use the same quasi-experimental approach to estimate the 

effect of public transit supply on road congestion. We demonstrate that, for the city of Rome, 

the marginal external cost is substantial: it is, on average, at least as large as half of private time 

travel cost, while reaching considerably higher levels during peak hours. 

                                                           
70 The marginal congestion relief benefit is comparable to the average benefit obtained in the previous section (see 

Table 10), though smaller. One reason is that the model of this section assumes that a higher subsidy translates 

into lower fares, which, given the low fare elasticity in Rome, attenuates the congestion relief benefit. By contrast, 

in Table 10 we consider the effect of a change in service (veh-kms). Furthermore, the methodology adopted in this 

section is more comprehensive. For example, it takes into account the effects on travel demand that come from 

both a change in prices and the adjustment in public transit supply. 
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Our findings suggest that congestion relief policies bring substantial welfare gains. For 

the city of Rome, when roads are not hypercongested, the marginal external cost of motor 

vehicle travel is €0.17 per kilometer on average, but almost double during peak hours. We also 

find that the welfare losses produced by congestion can be up to 50 times larger for 

hypercongested than for normally congested roads. We found that an increase in road 

congestion which induces a one minute delay for each motor travel induces a two minutes travel 

time loss for a bus traveler sharing the same road. About one third of the marginal external cost 

of road congestion in Rome are borne by bus travelers.  

Our findings support a range of alternative policies. For example, the high relevance of 

hypercongestion suggests that, even if road pricing instruments are available, the use of 

quantitative measures to curb traffic on heavily congested roads (e.g., through adaptive traffic 

lights) may be warranted (Fosgerau and Small, 2013). Our findings suggest that separate lanes 

for buses might be a priority in Rome, as road congestion has a strong effect on travel time 

delays of bus (Basso and Silva, 2014; Börjesson et. al, 2016). 

Our results also support policies aiming at reducing road congestion through an 

increased supply of public transit. We find that public transit – which has a modal share of 28% 

in Rome – reduces travel time of motor vehicles by roughly 15 percent in the morning peak, on 

average. We further show that the marginal congestion relief benefit of public transit provision 

does not vary with the level of public transit supply. In light of the significance of the 

congestion-relief effect, the current level of subsidies, which is about 75 percent of the 

operational costs in Rome, is justified and should possibly be even increased. 
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Appendix A1: Figures and Tables 

Figure A1 – Strikes by month     Figure A2 – Strikes by weekday  

 

 

Figure A3 –Public transit share by company  Figure A4 – Public transit on non-strike day  

 

Figure A5 – Rome  
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Figure A6 – Public transit service on strike days Figure A7 – Travel time histogram  

  

  
Figure A8 – Vehicle density histogram     Figure A9 – Vehicle flow histogram 

 
 
Figure A10 – Vehicle flow by hour of the day  Figure A11 – Heavy congestion by hour  
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Figure A12 –Travel time-density 

 
 

Table A1 - Logarithm of travel time 
 (1) (2) (3) (4) 

 All roads (33) Heavily congested 

(10) 

One-lane (12) Arterial roads (7) 

Density 0.0238*** 0.0251*** 0.0110*** 0.0290*** 

 (0.000101) (0.000121) (0.000128) (0.000932) 

N 422691 117,790 158,427 81,981 

R2 0.925 0.927 0.945 0.9163 

Note: The dependent variable is the logarithm of travel time. Controls are included but not tabulated. 

 

Table A2 – Public transit effect on motor-vehicle density 
 All roads  

(33) 

Heavily congested 

(10) 

One-lane  

(12) 

Arterial roads  

(7) 

Morning peak: Public transit 

share 

-5.15 

(0.67) 

*** -9.16 

(1.40) 

*** -3.78 

(0.51) 

*** -9.17 

(1.56) 

*** 

Afternoon peak: Public 

transit share 

-2.68 

(0.35) 

*** -4.56 

(0.74) 

*** -2.27 

(0.36) 

*** -2.60 

(0.78) 

*** 

Off-peak: Public transit 

share 

-1.71 

(0.16) 

*** -2.69 

(0.32) 

*** -1.68 

(0.16) 

*** -1.69 

(0.35) 

*** 

         

Observations 422,691 117,790 158,427 81,981 

R2 0.5445 0.4760 0.6814 0.5431 

Note: The dependent variable is density. Controls are included Standard errors (in parenthesis) robust and 

clustered by hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in 

column titles indicates the number of roads.  
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Appendix A2: Sensitivity Analysis of the effect of public transit share on travel time 

We conduct a range of sensitivity analyses to verify the effect of public transit share on travel 

time to various specifications. In column (1), we show results with day fixed effects. Our results 

appear very robust. In column (2), we cluster standard errors by road and week-of-year.71 

Standard errors become only slightly larger. In column (3), we add additional interaction effects 

for national strikes and semi-cancelled strikes as well as a white strike dummy.72 The estimated 

sizes of these interaction effects are very small. For example, during the white strike, travel 

time increases slightly by 0.032 min/km.  

 

 
Table A.2 – Travel time: alternative specifications 

 (1) (2) (3) 

 Travel time Travel time Travel time 

Morning peak: Public transit 

share 

-0.244 

(0.070) 

*** -0.249 

(0.075) 

*** -0.210 

(0.038) 

*** 

Afternoon peak: Public transit 

share 

-0.095 

(0.028) 

*** -0.096 

(0.025) 

*** -0.061 

(0.021) 

*** 

Off-peak: Public transit share 
-0.064 

(0.016) 

*** -0.073 

(0.018) 

*** -0.038 

(0.012) 

*** 

Public transit share × 

National strike 
 

 
  

0.028 

(0.011) 

** 

Public transit share × Semi-

cancelled strike 
 

 
 

 0.029 

(0.013) 

* 

White strike (dummy)  
 

 
 0.032 

(0.014) 

** 

       

Day-fixed effects Yes No No 

Clusters of standard errors Location 
Week-of-year 

and location 
Day 

Observations 422,691 422,619 422,691 

R2  0.5865 0.0005 0.5865 

Note: standard errors are robust and clustered. Significance level are indicated at 1%, ***, 5%, ** and 10%, * 

levels. Includes weather and time controls as in the main analysis. 

 

  

                                                           
71 Two-way clustering is possible because one dimension (measurement location) is much smaller than the other 

(i.e. week-of-year) and therefore we can make use of the asymptotic properties necessary for robust standard errors. 

As an alternative it seems useful to cluster standard errors both in terms of location and day, but this reduces the 

degrees of freedom below the value for which one can still estimate standard errors. 
72 During the white strike, a period of two weeks where public transit service was reduced through alternative 

means of striking excludes two strike days that fell into this period. 
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Appendix B: Public transit fares and motor-vehicle demand 

The effect from a change in public transit prices – fares – is another supply side function aspect 

we investigate. Rome`s public transit operator adjusted fare prices on May 25th of 2012, most 

notably for single tickets from €1 to €1.5.73 Fare prices are thought to affect demand for public 

transit and therefore its main alternative, private motor-vehicle use. Annual single ticket sales 

declined from 2011 to 2013 by 11% (ATAC 2011; 2013). This suggests that the price elasticity 

of public transit is -0.22, so public transit demand is rather inelastic, in line with Litman (2015). 

The fare increase allows us to estimate the effect of fares on travel time and flow using 

a discontinuity regression approach. We include observations for the year 2012, so we choose 

a window of about six months on both sides of the boundary, and we use the same control 

variables as in Table 4, while including third-order polynomial time trends before and after the 

boundary rather than week fixed effects. For results, see Table B1.  

We find that the fare hike increases flow by 30 vehicles (about 5% of the mean). The 

cross price elasticity of motorized vehicle travel with respect to transit prices is then about 0.10. 

This estimate is similar to long-run effects estimated for other (see Litman, 2015). More 

importantly the fare increase also increased travel time for motor vehicles by 0.048 min/km. 

The elasticity of motor vehicle travel time with respect to public transit fares is then about 

0.078.  

 

 
Table B.1 – Travel time and flow as a function of public transit fare changes 

 Travel time Flow  

 All roads Heavily congested All roads 

Fare increase by 50% 0.048 

(0.013) 

*** 0.116 

(0.026) 

*** 30.8 

(6.9) 

*** 

Time trends before boundary Yes Yes Yes 

Time trends after boundary Yes Yes Yes 

Controls    

Public transit share Yes Yes Yes 

Road fixed effects Yes Yes Yes 

Hour-of-weekday fixed effects (120) Yes Yes Yes 

Weather Yes Yes Yes 

Observations 113,129 31,654 113,139 

R2 0.7338 0.7239 0.8934 

Note: Time trends refers to 3rd order polynomials of time. Travel time regression is weighted by flow. Flow per 

lane regression is weighted by the number of lanes. Robust standard errors are clustered by hour. Significance 

levels indicated at 1%, ***, 5%, ** and 10%, *. 

 

                                                           
73 At the same time the maximum allowed travel time on a single ticket was increased from 75 min to 100 min, so 

far some travelers the price increase was less steep. Fare prices increased for monthly and annual tickets in a 

similar way.  
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 We have investigated the robustness of these results in several ways. In particular, we 

have estimated models controlling for linear trends while reducing the window size around the 

boundary. Given a six-months window (on both sides) but with linear controls, the results are 

identical. Given a five months or four months window the estimates increase to 0.06 and 0.10. 

Given a three-month window, the estimate is again 0.04, and still highly statistically significant.  
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Appendix C: Aggregate model for Rome adapting Parry and Small (2009) 

 

Table C.1– Aggregate model, parameters and results  

     Rail   Bus   

     Peak Off- Peak Off- 

          Peak   Peak 

TRANSIT         

Annual passenger kms, millions 1 639 628 3 403 2 304 

Vehicle occupancy (pass-km/veh-km) 160 87 51 34 

Average operating cost, €/veh-km 29 17 10 5 

Avg operating cost, €cents/pass-km 18 20 19 15 

Marginal supply cost, €cents/pass-km 11 12 13 10 

Fare. €cents/pass-km  5 5 5 5 

Subsidy, % of average operating cost 74 76 75 69 

Cost of in-vehicle travel time, €cents/pass-km 13 10 19 12 

Wait cost, €cents/pass-km  2 6 4 11 

Generalized price, €cents/pass-km 25 28 34 40 

Marginal scale economy, €cents/pass-km 1 4 2 7 

Marginal cost of occupancy, €cents/pass-km 2 0 1 0 

Marginal external cost, €cents/pass-km 0.4 0.2 3.5 2.6 

  Marg. congestion cost. €cents/pass-km 0.0 0.0 2.2 1.3 

  Pollution. climate & acc cost. €cents/pass-km 0.0 0.0 0.1 0.2 

  Marginal dwell cost. €cents/pass-km 0.4 0.2 1.3 1.1 

Elasticity of passenger demand wrt fare -0.22 -0.22 -0.22 -0.22 

Fraction of increased transit coming from       

  auto--same period 0.50 0.40 0.50 0.40 

  same transit mode--other period 0.10z 0.10 0.10 0.10 

  other transit mode--same period 0.30 0.30 0.30 0.30 

  increased overall travel demand 0.10 0.20 0.10 0.20 

AUTO    Peak Off-    

       Peak     

Annual passenger-kms, millions 8 623 12 837    

Occupancy   1.41 1.52    

Marginal external cost, €cents/pass-km 21 7    

  Marg. congestion cost. €cents/pass-km 23 8    

  Poll. & acc. less fuel tax. €cents/pass-km -2 -1    

 


