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1. Introduction

Cities define civilization and epitomize modernity, and yet the received economic wisdom is

that they are too big. Positive urban externalities — from better matching, greater sharing, and

quicker learning — give rise to agglomeration economies that create a centripetal attraction

to cities. These are countered by negative externalities — congestion, crime, pollution, and

disease — that create a centrifugal repulsion from cities. In the standard argument, negative

externalities come to dominate positive ones with city size. Free migration then causes cities to

become inefficiently large because migrants to cities do not pay for their increasingly negative

externalities. This view is presented as fact in any first course in urban economics, and it

is easily accepted as it reinforces ancient negative stereotypes of cities. Ultimately, this view

legitimizes policies that limit urban growth, such as land-use restrictions and disproportionate

governmental transfers towards rural areas.

We question the received wisdom and argue that large cities are likely to be too small for

either of two simple, but profound, reasons. First, fiscal externalities from federal taxes and

land purchases — which arise as individuals do not internalize the consequences of their

location decisions on revenues from taxes and land ownership — increase with city size, and

generally benefit non-migrants.1 Second, city sites are of heterogeneous quality, and incentives

are generally poor at allocating individuals efficiently across those sites, especially when local

authorities or interest groups have some control over in-migration.2 As a result, both the

intensive (number of cities) and extensive (size of cities) margins of urbanization are generally

inefficient: large cities on high-quality sites will be too small, and cities will be developed on

sites of quality inferior to that of an efficient urban system.

We reconcile conflicting intuitions on city sizes by demonstrating how our conclusions

depend on economic, fiscal, and institutional circumstances.3 Consider first the presence of

fiscal externalities. With fiscal externalities, migrants respond to incentives described by their

1Fiscal externalities from land purchases are mentioned in the work of Helpman and Pines (1980) and are
connected to the much discussed ‘Henry George Theorem’ in Vickrey (1977), Stiglitz (1977), and Arnott and
Stiglitz (1979). For reviews, see Vickrey (2002) and Arnott (2004), who states (p. 1072) that “Ricardian differences
in land” have not to his knowledge “been investigated in the literature.” Externalities from federal taxation are
discussed in Hochman and Pines (1997), and Albouy (2009, 2012). Ades and Glaeser (1995) argue that migrants
to capital cities, in particular, tend to absorb federal funds rather than contribute to them.

2Heterogeneous sites are a first-order feature of the world according to the work of Haurin (1980), Roback
(1982), Redding and Sturm (2008), Bleakly and Lin (2012), Davis and Weinstein (2002), Behrens, Mion, Murata, and
Suedekum (2011), Desmet and Rossi-Hansberg (2013), Allen and Arkolakis (2014), and Albouy (2016). However,
first nature is only one aspect that determines the location of cities. See, e.g., Powell (2012) for a detailed
description of how local interest-group thinking and colonial settlement policy jointly influenced the location
of New Orleans on what is arguably an inferior site.

3For arguments that cities are too large, see Harris and Todaro (1970), Tolley (1974), Arnott (1979), Upton
(1981), Abdel-Rahman (1988), and Fenge and Meier (2002). Formal reasoning on optimal systems of regions was
pioneered by Buchanan and Goetz (1972) and Flatters, Henderson, and Mieszkowski (1974); developed extensively
by Henderson (1974a), Vickrey (1977), and Stiglitz (1977); and given comprehensive treatments by Fujita (1989)
and Abdel-Rahman and Anas (2004).
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private average benefit instead of the social average benefit. If externalities increase with city

size — as they do, e.g., with federal income taxes — the private average benefit of large cities

may peek at population levels below the one that maximizes social average benefit. Since a local

government would maximize the former, whereas a social planner would maximize the latter,

cities may be too small when local governments have the power to restrict in-migration and

extract rents for its incumbent residents. Fiscal and institutional circumstances — free-riding

of local governments in the presence of federal income taxes — then cause cities to be too small

and too numerous. If cities can enforce cooperation, they would all be better off by enforcing a

higher population level, which runs counter to the canonical argument that cities are too large.

Consider next heterogeneous city sites. Heterogeneity in site quality can also lead to cities

being too small, especially on good sites. The latter is again particularly likely when local

governments can control city populations. The reason is simple: at the social optimum,

the planner balances the supramarginal gains of migrants moving from inferior to superior

sites with the inframarginal losses of residents staying at those sites. The marginal losses for

residents at the sending and receiving sites are generally more than offset by the discrete gains

of the migrants moving from inferior to superior sites. This is obvious with local governments

that maximize incumbents’ rents. At the city optimum, population changes induce local

welfare losses that are of second-order importance, whereas the reallocation of population

towards superior sites has a first-order social welfare effect.

We illustrate our model and gauge its quantitative implications by applying it to U.S. data.

Our simulations suggest that large American cities may be undersized by about a third, causing

about twice too many sites to be developed and more than half of the U.S. urban population

to be misallocated. Despite that sizable misallocation, the ensuing welfare costs are equal to

only around 1% of real consumption in the free-migration equilibrium. The main reason for

this low elasticity of welfare costs to the scope of urban misallocation is that the urban system

operates at close to constant returns.4 Misallocation costs are substantially higher if migration

is impeded by city governments who care only about the welfare of their residents. In that

case, local politics may generate welfare costs of about 18% of real consumption. While the

data suggest that large U.S. cities may be too small, urban systems in developing countries

— where fiscal externalities appear slight and coordination problems more rampant — may

be more prone to over-urbanization, with cities on the best sites suffering from the greatest

overcrowding.

Our paper contributes to several strands of the literature. First, our approach yields a

comprehensive characterization of the full urban system, thereby revisiting and encompassing

the canonical work of Buchanan and Goetz (1972), Flatters, Henderson, and Mieszkowsi (1974),

and the extensive literature that followed these pioneering works (see footnote 3).

4Behrens et al. (2011), Desmet and Rossi-Hansberg (2013), and Behrens, Duranton, and Robert-Nicoud (2014)
also find that the elasticity of welfare costs to the scope of urban misallocation is fairly small with free migration.
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Second, we complement work on the consequences of fiscal externalities on the fabric of

urban systems pioneered by Stiglitz (1977), Vickrey (1977), and others (see footnote 1) and

contemporaneously revisited by Eeckhout and Guner (2016) and Hsieh and Moretti (2016).

The efficient urban scale is zero in the latter models because there are decreasing returns to

urban scale at all city sizes. As a result, these settings feature an intensive margin only (how to

allocate population among an exogenously given number of cities). Like these authors, we find

that fiscal externalities may severely distort current urban systems. Our distinctive contribution

is to show that allowing for adjustment at the extensive margin (allowing the number of cities

to vary) adds new insights and qualifies several positive and normative results. Our setting

with an extensive margin is also more amenable to the analysis of urbanization in developing

countries, which arguably represents one of the great challenges of urbanization today.

Finally, variable returns to city size and the presence of an extensive margins prevent

us from using the tools pioneered by Allen and Arkolakis (2014) to characterize and solve

quantitative economic geography models such as Fajgelbaum, Morales, Suarez Serrato, and

Zidar (2015) or Redding (2016) that do not feature that margin. Our solution is to simplify

the geography by lumping any local production advantages of a city into a single parameter.

Under this simplifying assumption, we can solve for different allocations of people to cities

and characterize the positive and normative properties of those allocations.

The rest of the paper is structured as follows. Section 2 builds intuition and introduces

the model. Section 3 characterizes three different spatial allocations: (i) the optimal federal

allocation, which prevails when choices are made at the federal level; (ii) the local politics

allocation, which prevails when choices are made locally by city governments; and (iii) the

free migration allocations, which prevail when choices are made by unconstrained individuals.

Section 4 discusses how the different externalities can (or cannot) be internalized using federal

fiscal instruments and derives the optimal policy. Section 5 discusses our baseline calibration,

quantifies distortions in the city size distribution, and puts numbers on the welfare costs of

population misallocation across cities, with either free migration or city governments. Section 6

summarizes and concludes. A collection of appendices contains proofs, extensions, and data

descriptions.

2. An urban system with heterogeneous sites and fiscal externalities

2.1 Preview of the model

We develop our argument using a parsimonious model of urban systems that extends the

seminal work of Henderson (1974b). We depart from the canonical setting by adding hetero-

geneous sites and fiscal instruments, including land purchases, federal taxes, and discounts

to congestion and housing costs. To understand how adding either fiscal externalities or
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heterogeneous sites to the canonical model can overturn a central result in urban economics,

consider first the basic argument explaining why cities are too large.

Figure 1: Benefits curves and coordination problem with homogeneous sites.
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As drawn in Figure 1, the benefits migrants receive from entering a city are equal to the

average, rather than the marginal, benefit associated with urban life. Analogously to the

efficient scale of a firm, the efficient population scale of a city is attained at point I/O, where

the social marginal and social average benefits coincide. Yet, migrants who respond to the

(social) average benefit enter a city until it equals that of an outside option — possibly from

the countryside or another city — shown here by the ‘observed benefit’ equilibrium line. As

equilibrium population levels are only stable when benefits are falling with city size (to the

right of ni), population levels such as n
large
m are possible, while levels below the optimum, such

as nsmall
m , are ruled out.5 If all potential sites were identical, local governments would optimally

reduce their respective populations to ni, thereby raising the benefits of residents everywhere.

All existing cities are hence too large in equilibrium, and there are too few of them, which is

the standard result. In this paper, we extend that basic model in two directions and show how

each of them, and their interactions, give rise to fundamentally different results.

Consider first the presence of fiscal externalities. With fiscal externalities — or any other

kind of cross-city externality — migrants respond to incentives described by the dash-dotted

net private average benefits curve instead of the (social) average benefit in Figure 1. Assume

that the fiscal externalities are zero on net when all cities are the same size (through budget

balance), and that these externalities increase with city size. Therefore, private average benefits

are below social benefits when a city is larger than the others. As externalities increase with

city size, the private average benefit curve peaks to the left of point I/O. Hence, each local

5Using a similar reasoning, Knight (1924) already pointed out almost a century ago that free-access highways
tend to become overly congested.
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government has an incentive to shrink its city population to the new peak np — which is to

the left of the optimum ni — thereby free-riding off the benefits from other cities. If all city

governments lower their population to np, the reduction in fiscal externalities shifts the net pri-

vate average benefit curve down. At the resulting equilibrium, point P , which achieves budget

balance, residents everywhere are worse off. Free-riding of local governments causes cities to

be too small and too numerous. If cities can enforce cooperation, they would all be better off by

enforcing a higher population level, ni, which runs counter to the canonical argument that cities

are too large. With free migration by atomistic agents and fiscal externalities, all population

levels to the right of np are potentially stable, provided other cities are of the same size. While

cities may be too large, at nlargem , they may also be too small, at size nsmall
m . A priori the social

average benefit curve is unobserved: we do not know if it is upward or downward sloping at

an observed population and benefit level. Without further information, we do not know if the

population is to the left or right of the optimum.

Figure 2: Population split between superior (1) and inferior (2) sites.
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Consider next heterogeneous city sites. Heterogeneity in site quality can also lead to cities

being too small, particularly when city populations are constrained by local governments.

Consider an example with two cities — and no fiscal or other cross-city externalities — in

a classic ‘bucket’ diagram in Figure 2. Distance from the left vertical axis represents the

population in city 1, whereas the remaining population — given by the distance to the right

vertical axis — lives in city 2. As seen by its higher benefit curve, city 1 is located on a

superior site to that of city 2, e.g., a natural harbor on an ocean shore versus a landlocked

location in a scorching desert. Say that, by coincidence, with city governments, the cities are

each at the peak of their social average benefit (denoted sab) at I1 and I2, with the population

divided equally between the two: n1
p = n1

i = n2
p = n2

i . Yet, the social optimum is where the social
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marginal benefit (denoted smb) curves cross at points O1 and O2, where city 1 is larger than city 2:

n1
∗ > n2

∗. The optimum balances the supramarginal gains of migrants with the inframarginal

losses of residents. The marginal losses for residents at sites 1 and 2 (the decrease along

the benefits curve due to in- or out-migration) are more than offset by the discrete gains

of the migrants moving from the inferior site 2 to the superior site 1 (the upwards jump

between the benefits curves due to site switching). From the point of view of local voters,

the better site is over-populated at O1, whereas the worse site is under-populated at O2. Thus,

benefit-maximizing voters in city 1 would vote to curb migration since they bear the costs of

those moves. Note, however, that free migration could still lead to city 1 being overcrowded

and city 2 to be uninhabited, at points M1 and M2, respectively.

The foregoing simple examples consider separately fiscal externalities or two heterogeneous

sites. Moving to a general city-systems model that allows for both fiscal wedges and numerous

heterogeneous sites is a demanding task (Henderson, 1988), particularly when cities have bell-

shaped benefit curves. We approach the problem by taking site heterogeneity as continuous

— following the pioneering work of Aumann (1964) — and using concrete functional forms.6

The latter involve reduced forms of urban externalities, with economies and diseconomies

changing with the scale of a city at constant rates. Specific functional forms aid our analysis

in several ways. First, they transparently reveal the core economic mechanisms at work and

uncover the subtle interactions among them. Second, they enable us to easily compare different

economic parametrizations, reflecting a range of estimates on agglomeration economies and

diseconomies in the literature. They provide a unified framework within which to revisit

findings in urban and public economics, such as how efficient population allocations equalize

social marginal returns across space.7 The simplified but varied policy parameters allow us to

incorporate competing effects of federal taxation, payments to land, benefits to owner-occupied

housing, and congestion charges, all of which can vary tremendously across urban systems in

different countries. The presence of the extensive margin of urbanization also makes our model

relevant for applications to developing countries, where both the growth of existing cities and

the formation of new cities are important drivers of current urban change.

2.2 Urban production, site heterogeneity, and agglomeration

Having distilled the intuitions of our key results, we now more fully lay out the model. The

economy comprises a mass N of homogeneous worker-households, or agents, to be allocated

in a spatial economy. The economy is made of various cities with a total urban population

6On his assumption of a continuum of traders, Aumann (1964, p.41) writes: “The idea of a continuum of
traders may seem outlandish to the reader. Actually, it is no stranger than a continuum of prices or of strategies
or a continuum of ‘particles’ in fluid mechanics.” We assert that a continuum of cities is conceptually no stranger
than a continuum of traders.

7Examples include Flatters et al. (1974), Arnott and Stiglitz (1979), Kanemoto (1980), Henderson (1988), and
Abdel-Rahman and Anas (2004).
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of N , and a rural area, with a population NR. By definition, N ≡ N + NR. Sites that can

host cities are given a measure of one, and are heterogeneous in that they are not all equally

amenable to urban production.8 More precisely, we denote by a ∈ A ≡ [a, a] ⊆ R+ the

local exogenous production amenity. It is distributed according to the twice differentiable

cumulative distribution function G(·) over the interval A, which may be unbounded. The

(largely unexplored) extensive margin of urban systems is important for the analysis when the

worst developed site is better than a. In that case, there is room to develop additional cities.

Note that our analysis does not require an upper bound, i.e., a = ∞, accommodating many

distributions, such as the Pareto and Log-normal. While differentiability of the distribution

rules out mass points — as implied by Figure 2 — our results cover multi-peaked distributions

and the limiting homogeneous site case in Figure 1 where a = a so that A reduces to a singleton.

In what follows, we refer to a city with productivity a as ‘city a’ for short. The population of a

single city is denoted n. The gross output of a worker in city a is given by w(n, a) = anǫ, where

nǫ is a scale effect external to the representative firm, parameterizing the elasticity of output

with respect to city size. We are agnostic about the precise microeconomic foundations of

these agglomeration economies.9 The representative firm uses labor only, is perfectly competitive,

produces under constant returns to scale, and trades freely across cities. This makes the traded

good a natural choice as the numéraire. Total city production is given by an1+ǫ, implying a

social marginal product of (1 + ǫ)anǫ. The firm only captures the average social product, anǫ.

2.3 Urban costs and land

Urban dwellers work and consume two goods: the traded good, x, and land, l. One unit of land

is essential and utility increases linearly in the consumption of x. Thus, utility is u(l, x) = I(l)x,

where I(l) = 1 if l ≥ 1 and I(l) = 0 if l < 1. Hence, in equilibrium, utility is u(x) = x.

Costly commuting and scarce land mean that urban costs increase with city size.10 We

assume that total urban costs are given by n1+γ , where the parameter γ > 0 characterizes

urban diseconomies of scale. The difference, γnγ , between social marginal costs (1 + γ)nγ

and social average costs nγ provides the per-capita (differential) shadow-price of land in the

8We can extend the model to allow for sites that differ in (additive) amenities and congestion cost levels. As
this is not necessary to our main argument, we alleviate notation by focusing just on heterogeneous sites in terms
of productivity. Results with heterogeneous quality-of-life are available upon request.

9Agglomeration economies include knowledge spillovers and human capital externalities that are the engine
of modern economic growth (Lucas, 1988; Romer, 1990). Duranton and Puga (2004) survey a wide class of models
that deliver this reduced form via sharing, matching, and learning mechanisms. The evidence for agglomeration
economies is surveyed in Combes and Gobillon (2015).

10We follow the seminal work of Alonso (1964), Muth (1969), and Mills (1967) in taking urban costs as a
combination of costly commuting and competition over accessible land (see Duranton and Puga, 2015, for a
modern synthesis). It is restrictive, yet standard in the literature, to assume that all urban diseconomies are
related to land values. Pollution and noise are, for example, pure diseconomies that affect the city as a whole but
do not directly show up in land values (other than by influencing city size via migration).
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city.11 We impose γ > ǫ in order to ensure that urban costs come to dominate agglomeration

economies as cities grow large. This implies that optimal and equilibrium city sizes are finite.

Taking the social product net of urban costs, we characterize the social average benefit as

sab(n, a) = anǫ − nγ , and the social marginal benefit as:

smb(n, a) = (1 + ǫ)anǫ − (1 + γ)nγ . (1)

2.4 Land ownership and federal taxation

To determine equilibrium allocations, an important (and often hidden) assumption addresses

who claims land rents generated in the city. We let ρ define the share of the land value γnγ

that a migrant purchases, on the margin, to inhabit the city. It is fairly general to assume that

land payments accrue to the federal government, and are rebated lump-sum to all individuals.

The case of ρ = 1 is standard in a Roback (1982) equilibrium, while ρ = 0 is the most frequent

assumption in the optimal-city size literature. As migrants are rarely given land in the location

they move to, a value of ρ closer to one seems realistic for modeling migration. A lower value

may be justified if property rights for land are weak — whereby migrants ‘squat’ on land, as

in many developing countries (Jimenez, 1984) — or if land rents are collected through local

property taxes at a rate 1 − ρ, and redistributed through perfectly rival public goods.12 A

key observation is that the purchase of land, ργnγ , is a private cost to migrants but, unlike

commuting, is not a social cost. They are a transfer to another party whose receipt of the

transfer does not depend on her residence, making them a positive fiscal externality in the

urban system.

We assume the federal government taxes nominal wages at a uniform rate τ ≤ 1.13 We

11The Alonso-Muth-Mills monocentric model is the classic way to deliver such urban costs (Fujita, 1989;
Duranton and Puga, 2015). Our expression for urban costs fixes a choice of units. Consider a radial monocentric

city, with radius
√

n/(dΘ), where d is density and Θ is the arc of expansion. Set per-unit commuting costs as t,
and assume that commuting costs at distance z from the central business district are tz2γ . Land rent leaves agents
indifferent between locations within a linear city. The differential land rent — normalizing land values at the city
fringe to zero — is given by R(z) = t{[n/(dΘ)]γ − z2γ}. This implies Aggregate Urban Costs, Aggregate Land
Rent, and Aggregate Commuting Costs of:

AUC =
t

d1+γΘγ
n1+γ , ACC =

1

1 + γ
AUC and ALR =

γ

1 + γ
AUC,

with ALR + ACC = AUC. We set t = d1+γΘγ by choice of units to obtain our expression for aggregate urban
costs. The normalization of a in numéraire production causes it to be in proportion to such transportation costs.

12If squatters tend to live near the urban fringe, a positive value of ρ may still be justified. The literature on the
Henry George Theorem is in fact predicated on values of ρ = 0 and perfectly non-rival public goods. Yet, most
public services such as schools, roads, and police seem largely rival, in accordance with a central assumption of
Tiebout (1956). In the presence of local politics, we may alternatively interpret ρ as the political strength of specific
special interest groups, as discussed in subsection 3.2.

13We follow Albouy (2009) in assuming that the progressivity of the tax schedule is a secondary concern for
earners. The numeric model of Eeckhout and Guner (2015) pursues the importance of tax progressivity and takes
a different stance on landownership.
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further assume that urban costs are discounted at a uniform rate δ ≤ 1. This accounts for how

housing and commuting both receive implicit (and sometimes explicit) subsidies, e.g., from

the non-taxation of commuting time and implicit rental income of owner-occupiers. We use a

single rate, noting that discount rates to commuting are often similar to those for land.

We assume that all federal tax and land revenues are rebated lump-sum, so that everyone

receives a net payment T . These payments are independent of location, although they could

be indexed. A benefit of our closed system — where all fiscal revenues are redistributed — is

that all social benefits are internal to the system. Our normative results hence do not depend

on how welfare weights are assigned to absentee landlords or others.

2.5 Externalities within and across cities

Assembling the ingredients laid out in the foregoing, the utility an individual receives from

residing in city a of size n is equal to

u(n, a) = (1 − τ)anǫ − (1 − δ)nγ − ρ(1 − δ)γnγ + T ≡ pab(n, a) + T . (2)

The first term is the after-tax wage; the second, the after-discount average commuting cost; the

third, the after-discount land payment; and the fourth, a uniform rebate given lump-sum to

each urban resident. The sum of the first three terms in (2) is the (gross) private average benefit

(denoted pab) of residing in city a of size n. The transfer transforms this into a net measure and

does, by definition, not affect location choices. It is determined by the entire urban system.

Externalities per capita are found by differencing the social marginal benefit of being in city

a from the private average benefit of being there:

smb(n, a)− pab(n, a) = ǫanǫ − γnγ︸ ︷︷ ︸
smb−sab

+ τanǫ + ρ(1 − δ)γnγ − δnγ︸ ︷︷ ︸
sab−pab

.

The first term, smb− sab, expresses the standard urban externalities from agglomeration and

congestion within cities, independent of policies. This is the wedge considered in most of the

literature, and our approach acknowledges how it varies with amenities a and population n.

The second term, sab − pab, expresses fiscal externalities across cities due to federal taxes

and land payments, net of discounts. This externality increases with n for most standard

values, meaning that urban growth provides positive externalities to the economy. It exists

even without explicit federal policy, so long as migrants must purchase some land, i.e., if

τ = δ = 0 and ρ > 0.14

14If there are specific interest groups, such as incumbent homeowners, and if city size is determined by a
political voting process, 1 − ρ may be viewed as the share of local voters who (may) benefit from higher land
values, as in Fischel’s (2002) ‘homevoter hypothesis.’ Under this interpretation, the larger is ρ, the more powerful
are migrants relative to incumbents, and the smaller is the private efficient scale for a city.
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Cities in isolation exhibit positive but finite efficient scales. The fiscal parameters create

a wedge between the sizes, ni and np, that maximize social and private average benefits,

respectively (see Figure 1). Some basic properties of efficient city scales that will be useful

in what follows are summarized in the following lemma:

Lemma 1 (Properties of efficient city scales) In the social (equation (1)) and private (equation (2))

frameworks above, cities exhibit unique social and private efficient scales, ni(a) and np(a), determined

by smb [ni(a), a] = sab [ni(a), a] and pmb [np(a), a] = pab [np(a), a], respectively. These scales exhibit

the following properties:

(i) Population size: The private efficient scale is a multiple of the social efficient scale. More precisely:

ni(a) =

(
ǫ

γ
a

) 1
γ−ǫ

and np(a) = ni(a)Φ
1

γ−ǫ , where Φ ≡
1 − τ

(1 − δ)(1 + ργ)
> 0. (3)

(ii) Utility benefits: Efficient scales yield benefits sabi(a) ≡ sab[ni(a), a] and pabp(a) ≡ pab[np(a), a]

given by

sabi(a) =
(γ
ǫ
− 1

)
[ni(a)]

γ and pabp(a) = (1 − δ) (1 + ργ)
(γ
ǫ
− 1

)
[np(a)]

γ . (4)

(iii) Relative size: The elasticity of both efficient scales to site productivity, a, are constant, positive,

and equal to 1/(γ − ǫ). Using hat notation, x̂ = dx(a)/x, we have

n̂i = n̂p =
1

γ − ǫ
â, and ŝabi = p̂abp =

γ

γ − ǫ
â > 0. (5)

Proof The proof is immediate from smb [ni(a),a] = sab [ni(a),a] and from pmb [np(a),a] =

pab [np(a),a], and by using the definitions in the text.

Part (i) of Lemma 1 establishes that efficient scales naturally increase with site quality a.

They also increase with agglomeration economies, ǫ, and decrease with urban diseconomies, γ.

The ratio of these elasticities, γ/ǫ, equals the ratio of average urban benefits to costs, either

anǫ/nγ or Φanǫ/nγ . The parameter bundle Φ — which collects fiscal and landownership

parameters — reflects the private benefit-to-cost ratio relative to the social one. When Φ < 1,

the private efficient scale, np(a), falls short of the socially efficient scale, ni(a). Part (ii) shows

that benefits are a multiple of urban costs, nγ . Finally, part (iii) shows that np and up increase

at constant rates in a: better sites host larger cities and offer larger benefits to their residents.

2.6 The non-urban sector

Our model features an extensive margin of urbanization by allowing for an endogenous

number of cities. Yet, if all agents are assumed to live in cities, then the model is silent on the

issue of ‘urbanization’ in general, which is especially important when thinking of developing
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countries. We introduce a rural sector in order to address the issue of overall urbanization, and

to close the model in a general fashion. The rural population, NR ≡ N − N produces the

traded good (from agriculture) using a concave technology XR = F (NR). Rural workers earn

the competitive wage wR = F ′(NR). The omitted factor, agricultural land, LR, receives the

remaining product, F −NRF ′(NR). A fraction ρR of land rents from agriculture is collected

by a ‘federal land trust’, while 1 − ρR is distributed to agricultural workers. Let τR be the tax

on the agricultural wages, and TR be a transfer. The net-of-tax income a rural migrant receives

is then uR(NR) = (ρR − τR)F ′ + (1 − ρR)F/NR + TR.

We assume weakly positive but diminishing returns of adding people to the countryside:

F ′(N) ≥ 0 and F ′′(N) ≤ 0 for N ∈
[
0,N

]
. For concreteness, assume the agricultural

production function takes a constant-elasticity-of-substitution (ces) form:

XR = aRNR
[
(1 − α) + α(LR/NR)(1−σ)/σ

]σ/(1−σ)
, (6)

where aR ≥ 0, α ≥ 0, and σ ≥ 0 are scale, distribution, and substitution parameters,

respectively. Two important limiting cases are covered with ρR = 1. The first case is when

the rural population is fixed, corresponding to perfect complementarity, i.e., σ → 0. The

second is that of an outside option uR which is of a constant value, corresponding to perfect

substitution σ → ∞. In general, the rural sector provides a supply curve of urban population,

and may be as elastic as circumstances merit.

3. Three urban allocations

We now turn to the allocation of people between the urban system and the rural area, as well

as their allocation within the urban system. The question is to determine: (i) the rural-urban

population split (the extent of urbanization); (ii) which sites host cities (the extensive margin of

urban development); and (iii) how many urban dwellers are allocated to each of these cities

(the intensive margin of urbanization). We characterize three different allocations:

1. The centralized optimum (indexed with ∗), i.e., the one that a federal central planner would

choose, taking into account site heterogeneity. This allocation can be implemented, under

certain conditions, by competitive land developers;

2. The local politics allocation (indexed with p), i.e., when city sizes are chosen at the city level

by uncoordinated local governments who can restrict in-migration; and

3. The free migration equilibria (indexed with m), i.e., when households make individual

location decisions based on private incentives. Although there are multiple equilibria

in that case, we focus on a constrained-efficient equilibrium.
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In what follows, the subscripts for the centralized optimum, the local politics allocation,

and free-migration equilibria are given by ‘∗’, ‘p’, and ‘m’, respectively. Each of these three

allocations z ∈ {∗, p,m} is a mapping nz : a ∈ A → R+ that satisfies the population adding-up

constraint:

N =
∫ a

a
nz(a)dG(a) and NR +N = N . (7)

3.1 Centralized optimum allocation

The federal planner’s problem is to maximize aggregate consumption of the numéraire good

in the spatial economy by setting the intensive, n∗(a), and extensive, a∗, margins of the urban

system, as well as the degree of urbanization, N∗. All agents have a constant and identical

marginal utility of income. Hence, utility is transferable, and uniform transfers do not affect

location (Mirrlees, 1982). The problem of the federal planner is to optimize the following

Lagrangian:

L ≡ F (NR) +
∫ a

a∗

n(a) [an(a)ǫ − n(a)γ ]dG(a) + µ

[
N −NR −

∫ a

a∗

n(a)dG(a)

]
. (8)

The first-order condition with respect to µ yields the population adding-up constraint in

equation (7). The first-order condition for the optimal rural population, NR, is given by

µ∗ ≥ F ′(NR
∗ ), NR

∗ ≥ 0, (9)

while the first-order conditions for the optimal city sizes, n(a), are characterized by

smb[n∗(a), a] ≡ a(1 + ǫ)n∗(a)
ǫ − (1 + γ)n∗(a)

γ ≤ µ∗, n∗(a) ≥ 0. (10)

Equation (10) states that the social marginal benefit of residing in any city must be equal across

all occupied sites (Flatters et al., 1974). It equals µ∗ — the Lagrange multiplier evaluated at the

(highest) optimal value — which itself equals the marginal benefit in the rural area from (9).

Each case has complementary slackness. While complementary slackness is not crucial in

(9) because we assume that there is an interior rural-urban split, it is more interesting and

important in (10) since not all sites need to develop cities. The first-order condition for the

optimal extensive margin of urban development, a∗, yields

µ∗ = a∗n∗(a∗)
ǫ − n∗(a∗)

γ ≤
(γ
ǫ
− 1

)
ni(a∗)

γ = ui(a∗). (11)

In addition, observe that by the envelope theorem,

µ∗ =
∂

∂N
L (n∗(a),µ∗) (12)

holds at the optimal allocation. In words, the social marginal value of population equals both

agricultural productivity and urban productivity net of urban costs.

We may now show our first set of results describing the centralized optimum allocation:
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Lemma 2 (Structure of the centralized optimum allocation) There exists a unique solution to

equations (9), (10), and (11), which characterizes the optimal allocation. In particular:

(i) Extent of urbanization: There exists a unique urban population size N∗ ∈ [0,N ];

(ii) Urban extensive margin: There exists a unique threshold a∗ ∈ A such that

N∗ =
∫ a

a∗

n∗(a)dG(a), n∗(a) > 0 for all a ≥ a∗, and n∗(a) = 0 otherwise;

(iii) Minimum city size: the optimal size of the smallest city is no smaller than its efficient scale, i.e.,

n∗(a∗) = k∗

(
ǫ

γ
a∗

) 1
γ−ǫ

= k∗ni(a∗), k∗ ≥ 1, (13)

with k∗ = 1 if a > a. The worst site developed is at its efficient scale unless all sites are occupied;

(iv) Urban intensive margin: For all a > a∗, the optimal city size n∗(a) is increasing in a, with

n̂∗

â
=

1

γ

Γ

(n∗/ni)γ−ǫ − Φ∗
> 0, where Γ ≡

γ

ǫ
Φ∗ and Φ∗ =

1 + ǫ

1 + γ
; (14)

(v) Implicit solution: The optimal solution n∗ = n∗(a) is implicitly determined by the equation

(
a

a∗

) γ
γ−ǫ

=
Γkǫ∗ − k

γ
∗

Γ (n∗/ni)ǫ − (n∗/ni)γ
, (15)

for n∗/ni ∈
(

1,Γ 1/(γ−ǫ)
)

. For all a > a∗, n∗(a) is (weakly) larger than its efficient scale, ni(a), and

lower than the size with zero marginal net production: n0(a) ≡ (aΦ∗)1/(γ−ǫ).

Proof See Appendix A.1.

Part (i) of Lemma 2 first establishes that there is a unique rural-urban population split that

pins down the extent of urbanization. Part (ii) states that there is a minimal site quality, a∗, with

all inferior sites undeveloped. Unless all sites are occupied, the inferior site is at its efficient

scale ni(a∗) in (3) by part (iii), in analogy with producer theory. Part (iv) establishes the relative

size of cities on sites of quality superior to a∗, expressed in elasticity form. It also shows that,

as expected, city size is increasing in site quality a. Last, the implicit solution for n∗(a) is seen

in (v), expressed as a ratio to ni(a) as introduced in Lemma 1.

Figure 3 illustrates properties of an optimal allocation with productivity a1 > a2 > a3.

For each city, j, the social marginal benefit curve, smbj , intersects the average benefit curve,

sabj , at the social efficient scales n
j
i . The optimal sizes, nj∗ with equal social marginal benefits

are (weakly) larger than n
j
i . Furthermore, the gap between n

j
i — the top of the ∩-curves —

and n
j
∗ — which equalizes the social marginal benefits across cities — increases with a: the

agglomeration distortion is worse for better sites. In the centralized optimum allocation, superior
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Figure 3: Centralized optimum city sizes and socially efficient scales.
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sites are pushed beyond their efficient scale to benefit outsiders. From an isolated point-of-

view, everyone believes their city is “too big” — the more so the bigger is the city — although

globally it is not.

Figure 4 further illustrates properties of the optimum. The socially efficient scale, ni(a),

increases with a at a constant rate of 1/(γ − ǫ). The optimal population, n∗(a), increases at

a much greater, albeit declining rate. At reasonably low population levels, N1, some sites are

uninhabited. As N rises, more sites are inhabited, and populations on all inhabited sites rise:

urbanization proceeds along the intensive and extensive margins. With a very high urban

population N2 > N1, all sites become occupied, and all are crowded beyond ni(a), as the

extensive margin is shut down. Observe that the elasticity of city size to amenities a falls

throughout the urban system as worse sites are progressively put into use. As the urban

system runs out of sites, the city size distribution tends to become more even.
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We now turn to the welfare properties of the optimal allocation.

Proposition 1 (Welfare in the centralized optimum allocation) The normative properties of the

optimal allocation characterized by equations (9), (10), and (11) when a∗ > a are the following:

(i) Urban benefits: For a ≥ a∗, the social marginal benefit is constant at

smb [n∗(a), a] = µ∗ = ui(a∗) = F ′(NR
∗ ), (16)

while social average benefits increase with site quality a as follows:

sab∗(a) ≡ sab [n∗(a), a] = µ∗
1

1 + ǫ

Γ − Φ∗ (n∗/ni)
γ−ǫ

Γ − (n∗/ni)
γ−ǫ

≥ µ∗, sab′∗(a) ≥ 0;

(ii) Decreasing returns of the economy: The economy as a whole features decreasing returns with

respect to population
L∗

N
>

∂L∗

∂N
= µ∗;

(iii) Decreasing returns of the urban system: For any given rural population NR, the urban system

exhibits decreasing returns, i.e., the social marginal benefit of urban dwellers is below the social average

benefit. The decreasing returns occur at both the intensive and the extensive margins:

da∗
dN

< 0 and
dn∗(a)

dN
> 0 for all a > a∗.

Proof See Appendix A.2.

Part (i) of Proposition 1 establishes that urban benefits and congestion increase in a, as

described in Figure 4. Parts (ii) and (iii) establish that there are decreasing returns to the

economy in general — and to the urban system in particular — for all values of N and N ,

which is illustrated in Figure 5. This bucket diagram plots the urban share of the population,

N/N , as the distance from the left axis and the rural share, NR/N , as the distance from the

right. Social average and marginal benefits of the urban system fall with the urban share, while

rural average and marginal benefits rise, as derived from the ces function (6). The intersection

of urban and rural marginal benefit curves determines the optimal degree of urbanization, N∗,

and the marginal benefit of urbanization, µ∗.

3.2 Local politics allocation

Consider next the allocation that arises if city governments maximize the average utility of their

residents, ignoring the consequences of their choices for potential migrants. Local authorities

have the power to exclude people either directly — by using urban growth boundaries and

other controls — or indirectly — by using land-use regulations that impose a ‘regulatory tax’

on potential newcomers (Glaeser, Gyourko, and Saks, 2005). Then, local authorities expand

15



Figure 5: Benefits of an optimal urban system, and the extent of urbanization.
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their city only as long as the benefits of doing so outweigh the costs, meaning that they choose

the privately efficient scale, np(a), described in Lemma 1.

We assume that only the best sites are populated in the local politics allocation, namely,

there exists ap ∈ A such that np(a) > 0 if and only if a ≥ ap and np(a) = 0 otherwise. With

migration limited, cities offer different returns, and if all sites are occupied (i.e., ap = a), the

rural sector may offer a lower return than the worst city. The following conclusions ensue:

Proposition 2 (Normative properties of the local politics allocation) Assume that local govern-

ments maximize the average utility of their residents. If some sites are unoccupied at the optimum, i.e.,

a∗ > a, then:

(i) If Φ < 1, large cities are undersized and there are too many cities. The excess small cities are oversized

by virtue of existing;

(ii) If Φ = 1, the optimum is achieved if sites are homogeneous. With site heterogeneity, there are too

many cities, with large cities being undersized and small cities being oversized;

(iii) If 1 < Φ < Γ , there are too few cities that are all oversized if sites are homogeneous. With site

heterogeneity, small cities are oversized, there are (generically) too many or too few cities, and large cities

are undersized if a < ∞.

(iv) If Φ ≥ Γ , there are too few cities and all cities are oversized.

(v) Urban benefits: In all cases, urban benefits increase with a as a constant multiple of urban costs.

Private average benefits increase with a according to pabp(am) defined in (4).

Proof See Appendix A.3.

Several comments are in order. First, Proposition 2 is stated for the case where some sites are

left unoccupied. If all sites are occupied at the optimum, a∗ = a, then Proposition 2 still holds if
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we replace 1 with k
1/(γ−ǫ)
∗ < 1 in the cases above. In words, when all sites are occupied, larger

cities are quite naturally less likely to be undersized than when some sites are left vacant.

Second, in the absence of fiscal externalities, Φ = 1, local politics allocate the efficient scale

to each city, i.e., ni(a) = np(a). With homogeneous sites, the classic “Henry George Theorem”

(Flatters et al., 1974; Vickrey, 1977; Arnott and Stiglitz, 1979) holds and land rents are equal

to the value of each city’s positive economies. With heterogeneous sites, this theorem breaks

down: at the optimum, land rents exceed those economies in all but the smallest city. At their

minimum efficient scale, ni(a), large cities with a > a∗ are undersized, while sites with a = a∗

are just the right size. The excess population due to restricted entry into larger cities is put

into sites that would not otherwise exist, and those cities are therefore ‘oversized’ by virtue of

existing. Thus site heterogeneity is sufficient to overturn a central result in urban economics.

This is generally made worse with the extensive margin or fiscal externalities.

Which case of Proposition 2 is the most plausible one? The case where Φ < 1 appears to

describe modern oecd economies, where tax and land payments resulting from agglomeration

are high relative to congestion discounts. This then reduces the private benefit of urbanization

below its social value. In that case, the private efficient scale is below the social one, i.e.

np(a) < ni(a), and thus by transitivity, the local politics population is lower than the optimal

one, n∗(a). Additional population is then pushed out onto inferior sites, which are over-sized

by virtue of existing. If 1 < Φ < Γ , local incentives to stay small are generally dominated by

generous fiscal benefits to large cities. The incentives to ‘go big’ can only dominate for the few

best sites, whereas the bulk of the other sites remains too small. For Φ > Γ , an unlikely case

especially for modern oecd economies, cities are always too big.

As Figure 3 shows in the simplest case of Φ = 1 , i.e., no externalities, the sabp(a) = pabp(a)

schedule is much steeper than the sab∗(n) schedule of the optimum. Local governments at

the best sites keep out migrants to preserve benefits for their constituents, thereby leading to

undersized large cities and a proliferation of cities on inferior sites. These types of nimby-istic

policies used to control local populations appear commonplace. They can take the form of

urban containment in some North-American cities such as Portland, Oregon, and Vancouver,

British Columbia, and in the United Kingdom (Cheshire and Sheppard, 2002), or of restrictive

land use regulations (Glaeser et al., 2005; Hilber and Robert-Nicoud, 2013). The normative

implication of the model is that policies that heavily restrict urban development should not be

designed by local authorities alone because they fail to internalize the benefits of these policies

to outsiders.15

15Vermeulen (2016) reaches a similar conclusion in a very different setup.
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3.3 Free-migration equilibria

The other important, and often more realistic, case is that of decentralized free-migration

equilibria. In that case, migrants move to the city that offers the highest utility. Consequently,

with identical households, utility is the same across all inhabited sites. Formally, the mobility

condition is

pab(n, a) = µm = um − Tm (17)

for all sites a ∈ A with nm(a) > 0, and um ≥ uR(NR
m). Equilibria must satisfy the additional

requirement of each city’s population being stable, which is guaranteed if ∂pab(n, a)/∂n ≤ 0

and ∂uR(NR)/∂NR < 0. The foregoing conditions imply that urban population levels in a

free-migration equilibrium are at least as large as with local politics, nm ≥ np. Without further

refinement, um may take different values, corresponding to different free-migration equilibria.

While multiple equilibria are interesting, we focus on a constrained-efficient free-migration

equilibrium, and compare it to the optimum. Besides free mobility, the additional constraint

this equilibrium imposes, is that households will seek out new sites if they can profit from

them by later selling the land to other migrants.16 It produces the smallest stable cities in a

free-migration equilibrium, characterized below.

The constrained-efficient free-migration equilibrium is characterized by the following

lemma, which mirrors Lemma 2, with equations (9) and (11) being replaced by

um ≥ uR(NR
m), NR

m ≥ 0 (18)

(with complementary slackness) and

um = (1 − τ)amnm(am)
ǫ − (1 − δ)(1 + ργ)nm(am)

γ , (19)

respectively:

Lemma 3 (Structure of the constrained-efficient free-migration allocation) There exists a unique

solution to equations (17), (18), and (19) which characterizes the free-migration allocation. In particular:

(i) Extent of urbanization: There exists a unique urban population size Nm ∈
[
0,N

]
;

16The free-migration equilibrium, which has the smallest city at its privately efficient scale, can be rationalized
as the result of forward looking residents and potential developers in a multi-stage game (Seegert 2011, 2013).
Potential developers do not choose smaller sizes because of stability problems, which results in no profits being
made and lower welfare. They do not choose larger sizes, as any migrant is better off in a new city at a ≥ am,
acquiring land for free, than joining an existing city. This is an extreme equilibrium that Milgrom and Roberts
(1994) suggest is most useful for comparisons. In our simulations below, assuming cities are larger by a factor
of km ∈ (1,1.5] does not result in substantially different results, especially for welfare. See also recent work by
Henderson and Venables (2009) that discusses the dynamics of city formation without large agents and comes
close to solving the coordination failure.
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Figure 6: Centralized optimum, local politics, and free migration city sizes with Φ = 1.
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(ii) Urban extensive margin: There exists a unique threshold am ∈ A such that

Nm =
∫ a

am

nm(a)dG(a), nm(a) > 0 for all a ≥ am, and nm(a) = 0 otherwise;

(iii) Minimum city size: The equilibrium size of the smallest city is no smaller than its private efficient

scale

nm(am) = km

(
Φ
ǫ

γ
am

) 1
γ−ǫ

= kmnp(am), km ≥ 1, (20)

with km = 1 if am > a, i.e., if some sites are uninhabited;

(iv) Urban intensive margin: For all a > am, the equilibrium city size nm(a) is increasing in a, with

n̂m

â
=

1

γ

γ
ǫ
Φ

(nm/ni)γ−ǫ − Φ
=

1

ǫ

1

(nm/np)γ−ǫ − 1
; (21)

(v) Implicit solution: The free-migration solution satisfies the equation

(
a

am

) γ
γ−ǫ

=
γ
ǫ
kǫm − k

γ
m

γ
ǫ
(nm/np)ǫ − (nm/np)γ

, (22)

where km ≡ nm(am)/np(am) equals 1 if am > a. For all a > a∗, the equilibrium city size nm(a) is

(weakly) larger than its privately efficient scale, np(a), and lower than the size with zero marginal net

production: n0(a) ≡ (aΦ)1/(γ−ǫ).

Proof See Appendix A.4.

A free-migration equilibrium is contrasted to the optimal and local politics allocations in

Figure 6, for the special case with Φ = 1. Disregard sites 3 and 4 for now and consider only
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sites 1 and 2. The smaller city at M2/I2 is at its private efficient scale, i.e., nm(am) = np(am).17

City 1 offers the same sabm as this city, which determines its population at point M1. The

marginal site with city 2 is superior to the optimal one a∗. Yet, the free-migration population

at am is too small: nm(am) < n∗(am), seen at O2, although larger than the smallest city at the

optimum n∗(a∗) at O3. However, the best site with city 1 has a higher population than the

optimum at O1. As Figure 6 shows, local politics — by restricting city sizes — forces residents

onto more numerous and inferior sites, reaching down to ap, with low benefits at I4 because of

diminishing returns in the rural sector. With free migration, social marginal benefits fall with

the productivity of the city, as better sites are increasingly over-crowded from the global (not

just the local) perspective.

With large positive fiscal externalities, Φ < Φ∗, for example when the tax rate on urban

wages is higher than the discount rate on urban costs, the free-migration equilibrium becomes

generically suboptimal, including the case with homogeneous sites — recall Figure 1.18 With

Φ < Φ∗, the best sites are always underpopulated, which we can see as we consider welfare:

Proposition 3 (Normative properties of the constrained-efficient free-migration equilibrium)

Consider the constrained-efficient free-migration equilibrium with nm(a) > 0 for all a ≥ am, nm(a) =

0 for all a < am, and nm(am) = np(am). This equilibrium is such that:

(i) If Φ ≤ Φ∗, cities are too numerous. Large cities are too small, whereas small cities are too large by

virtue of existing;

(ii) If Φ∗ < Φ < 1, then cities are too small and numerous if sites are homogeneous. If sites are

heterogeneous, there are (generically) too many or too few cities, and large cities are over-sized if a < ∞;

(iii) If Φ = 1, then the optimum is achieved with homogeneous sites. If sites are heterogeneous, there are

too few cities, and large cities are oversized;

(iv) If Φ > 1, then large cities are oversized, and there are too few cities.

When all sites are occupied at the optimum, a∗ = a, then cities are optimally sized if Φ = Φ∗; large

(small) cities are too small (big) if Φ < Φ∗; large (small) cities are too big (small) if Φ > Φ∗.

(v) Urban benefits: The private average benefit received uniformly across cities is µm ≡ pabm(a) =

pabp(am), defined in (4), while the social marginal benefits vary with a according to

smbm(a) ≡ smb[nm(a), a] = µm
1 + ǫ

1 − τ

Γ − Φ (nm/np)
γ−ǫ

Γ − Φ∗ (nm/np)
γ−ǫ

, (23)

which increases with a if Φ < Φ∗.

17If sites were homogeneous, this would also produce the optimal Henry George result.
18The upper tail of the free-migration equilibrium city size distribution, nm(a), inherits the properties of the

distribution of site characteristics in the same way that np(a) does (see also Behrens and Robert-Nicoud, 2015).
If very good sites are very scarce — there are not many natural harbors of the same quality as New York’s —
and if those sites are developed in priority, then large cities are also scarce and the city size distribution displays
properties consistent with Zipf’s law.
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Proof See Appendix A.5.

Relative equilibrium population sizes for case (i), when Φ < Φ∗, are covered in Figure 7. The

smallest equilibrium city, am, is at the private efficient scale, np(a), and below the social one,

ni(a). The elasticity of size with respect to productivity is initially infinite, but then tapers off.

In this case, there is a point where the equilibrium and optimal city sizes, n∗(a) cross, after

which city sizes are too smalll. While we argue this case holds for most oecd countries, it may

exist with no explicit federal policies just from land purchases alone. When τ = δ = 0, but

ρ ≥ (1 − ǫ/γ)/(1 + γ), large cities are underpopulated with free migration.

Figure 7: Optimal, free-migration, and local politics city sizes.
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The three other cases (ii), (iii), and (iv) under heterogeneity, as well as the case of all

sites being populated, are illustrated further in the proof in Appendix A.5. With Φ = Φ∗,

the optimum cannot be achieved since the city at a∗ would be too small due to the fiscal

externality. With the optimal population rate of change with respect to a, the population

adding-up constraint would be violated. Therefore more cities will exist. With Φ = 1 (in the

absence of fiscal wedges), making the city at a∗ optimally sized leads to all superior sites being

too large. Therefore fewer cities will exist. When Φ ≥ Γ (the fiscal system discounts urban

costs more than it taxes wages), the optimal size is always below the private efficient scale, and

very few cities exist. Finally, when all sites are occupied but Φ < Φ∗, then differences in city

size are smaller than in the optimum: small cities are too large, while large cities are too small,

similar to Albouy (2009).

Although we emphasize issues arising from heterogeneity and fiscal externalities, much of

the work on urban systems is concerned about coordination failures related to inadequate

decentralization — the so-called ‘migration pathology’. The initial benefit of occupying a site

in our ∩-shape formulation for net benefits is essentially zero. For a city to reach a stable
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population it must provide a threshold utility as good as the value of living elsewhere, which

requires a quantum leap of population. In a system with growing N , existing cities risk

becoming overcrowded if marginal (inferior) sites are not developed quickly enough. Multiple

equilibria can be characterized in our formulation by setting km > 1 for a marginal site am > a.

This means some sites remain unoccupied, while even the worst-sited city is crowded beyond

its private efficient scale. The equilibrium that can arise by coordination failure of decentralized

migration decisions is illustrated in Figure 7, where all cities are too big for the highest curve.

While an equilibrium with smaller cities is reasonable, larger cities cannot be ruled out.

3.4 Optimal urban systems and the urban-rural fringe

The middle and bottom panels of Table 1 summarize the results of the foregoing subsections.

The top panel completes the picture by emphasizing that — on top of what is going on in the

urban system — urbanization itself may be excessive or insufficient. To see why this is so,

recall that efficiency requires the marginal product of labor to be equal to the economy-wide

social marginal benefit, i.e., F ′(NR) = µ∗. When ρR < 1, i.e., rural land ownership is granted to

migrants (at least partially), the rural private average benefit is greater than the social marginal

benefit. A spatial allocation with free migration is generally inefficient in this case because the

marginal benefit of being in the rural sector exceeds the marginal benefit of being in the urban

sector. With fiscal wedges and urban externalities, the spatial allocation of agents is, in general,

inefficient at the rural-urban margin. The top panel of Table 1 covers the various possibilities.

Table 1: Comparisons of allocations with the centralized optimum when a∗ > a.

ρ = 1 ρ < 1
Urbanization.
uR(N

R) < µ∗ Too little Too little
uR(N

R) ≥ µ∗ Too much Ambiguous

Φ < 1 Φ = 1 Φ ∈ (1,Γ ) Φ ≥ Γ

Local politics.

Large cities undersized undersized§ undersized‡ oversized
Small cities oversized† oversized§ oversized oversized
Number of cities too many too many§ ambiguous too few

Φ < Φ∗ Φ ∈ [Φ∗, 1) Φ = 1 Φ ∈ (1,Γ ) Φ ≥ Γ

Free migration.

Large cities undersized oversized‡ oversized§ oversized oversized
Small cities oversized† undersized undersized§ ambiguous oversized
Number of cities too many ambiguous too few§ too few too few

Notes: §optimal if homogeneous; †by virtue of existing; ‡if a is sufficiently large.

Without fiscal externalities in either the urban or rural system, free migration between the

rural and urban sector can result in under-urbanization even if the urban sector is efficiently

organized. This case is represented by point M in Figure 5, where urban-rural migration

22



equalizes (ex ante) average benefits in each sector, whereas the equalization of marginal benefits

would entail a larger urban population at point O. Sub-optimal organization of the urban

system can aggravate this problem. If urban populations are determined by local politics,

urbanization may be even lower, at point P .19

4. Internalizing wedges using federal fiscal instruments

Since fiscal wedges and urban externalities prevent the urban system from being efficient, a

natural question is how policies or fiscal instruments may help neutralize distortions.

4.1 Implementing the optimal allocation through developers

With no fiscal wedges (ρ = τ = δ = 0, so that Φ = 1), the optimum with heterogeneity may

be implemented as an equilibrium outcome with perfectly competitive land developers, as in

Henderson’s (1974) work with homogeneous land (see Appendix B for the proof). Competitive

developers offer subsidies to, and collect land rents from, urban dwellers. These payments

internalize all urban externalities within cities, which could lead to inefficient migration as

discussed before. What is most remarkable is that the developer result extends to our setting

with heterogeneous land. The key assumption is that land developers are atomistic and behave

competitively. Developers who own superior sites make strictly positive profits since better

sites are in limited supply and hence command Ricardian rents. The major caveats are that

developers lack incentives to create optimal city sizes if there are fiscal externalities or they

have market power (market power also prevents land developers to implement the socially

efficient allocation in the model with homogeneous land).

4.2 Internalizing urban externalities

The parameters that provide the optimal allocation with free-migration may be determined by

finding values of km and Φ that allow nm = n∗ to satisfy both (15) and (22):

Proposition 4 (Implementing the optimal allocation) With free migration, the optimal allocation

can be implemented using the following policy:

(i) Social marginal benefits are equalized across sites by setting Φ = Φ∗, thus neutralizing the wedge

due to agglomeration economies and urban costs;

(ii) The smallest site is set at its socially efficient scale: if a∗ < a, km = (Φ∗)
− 1

γ−ǫ k∗ ≡ k∗m.

Proof See Appendix A.6.

19The assumption of free urban-rural migration equalizing average expected benefits is similar to that of Harris
and Todaro (1970), who argue that this leads to over-urbanization, while we still find the opposite to be possible.
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With three fiscal parameters in Φ, there are an infinite number of ways of equalizing social

marginal benefits. Two particularly interesting solutions that allow to equalize Φ and Φ∗ are

τ∗ = −ǫ < 0, and either ρ∗ = 1 and δ∗ = 0, or δ∗ = −
γ(1 − ρ∗)

1 + ρ∗γ
≤ 0. (24)

Setting τ = ǫ provides a Pigouvian subsidy for agglomeration spillovers, so that workers

internalize those benefits. Setting ρ = 1 requires that workers pay for land costs completely.

Combined, these two results suggest an alternative “Henry George Theorem”, whereby the

federal government fully taxes land, and uses it to subsidize agglomeration spillovers (which

could be generalized to include public goods). At the optimum, this scheme generates a

surplus with heterogeneous sites, as cities beyond their social efficient scales have land values

greater than agglomeration benefits. The second alternative, with δ∗ < 0 raises revenue through

what is essentially a congestion charge.20

As implied by Proposition 4, equalizing social marginal benefits is generally insufficient when

some sites are unoccupied. The development externality at Φ = Φ∗ distorts the value of marginal

sites. In the constrained-efficient migration equilibrium, the smallest site is undersized by the

ratio Φ
1/(γ−ǫ)
∗ < 1. As a result, too many sites are occupied. Internalizing urban externalities

by creating fiscal wedges distorts the extensive margin (see also Vermeulen, 2016). Achieving

the efficient outcome requires additional coordination to abandon inferior sites to crowd better

ones. The politics to coordinate such abandonment may be insurmountable.

This result is important for two reasons. First, it implies that any analysis of the conse-

quences of fiscal policies on the spatial allocation of agents that does not allow for adjustments

at the extensive margin is incomplete. This applies to existing models of ‘optimal city systems

and taxation’ that work with a fixed number of cities (Eeckhout and Guner, 2015; Hsieh

and Moretti, 2015; Fajgelbaum, Morales, Suarez Serrato, and Zidar, 2015). It is a corollary

of a standard result in public economics and second-best theory: when there are multiple

externalities, fixing one may exacerbate another (Tinbergen, 1952; Lipsey and Lancaster, 1956).

Second, this policy entails subsidizing wages and taxing land and congestion. This is the

opposite of what most current oecd tax systems do, and our results suggest that this may

skew the population distribution away from the better sites.

4.3 Generalized optimal transfers and tax systems

To achieve the optimum in equilibrium, we consider two alternative policies, extending the

model slightly.21 The first is that of a system of city-specific transfers, T (a), so that net

20By controlling two parameters, both of these schemes work to equalize social marginal benefits, even when
cities vary in quality of life.

21To simplify, we abstract from rural-urban migration. It is straightforward to add a tax or transfer to the rural
sector to implement the efficient rural-urban margin.
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private average benefits for each city are u(n, a) = pab(n, a) + T (a). Two requirements

must be met. First, social marginal benefits are equalized across cities. This means that

smb(n, a) − u[n(a∗), a∗] = ∆, where ∆ is a constant. Second, the extensive margin is cor-

rected by setting ∆ = 0. Together, these requirements mean that the optimal transfer is

T∗(a) = smb(n, a)− pab[n(a∗), a∗].

Altenatively, we can consider non-linear policies. We may solve for an optimal nonlinear

tax, τ(a), which is proportional to the wedge between average and marginal benefits within

cities:

τ∗(a) =
sab∗(a)− smb∗(a)

sab∗(a)
= γ

[n∗(a)/ni(a)]
γ−ǫ − 1

γ
ǫ
− [n∗(a)/ni(a)]

γ−ǫ
, (25)

which is zero at the smallest city and increases with city size as the wedge grows. It does not

depend on the other policy parameters. To not distort other behavioral responses, Φ should be

kept equal to one. If we take ρ to be fixed by local decree, this implies

δ∗(a) = 1 −
1

1 + ργ

smb∗(a)

sab∗(a)
= γ

γ
ǫ − 1 + (1 − ρ) [an∗(a)

ǫ − n∗(a)
γ ]

(1 + γ)
(
γ
ǫ
− [n∗(a)/ni(a)]

γ−ǫ
) . (26)

It is easy to show that δ∗(a) ≥ τ∗(a), with equality if ρ = 0. Thus, when residents own land,

they are paid a subsidy to amortize their costs, counteracting the development externality.

When all land values are appropriated locally, τ = δ, and larger cities pay more on net to the

federal government. Using these, we can establish the following results.

Proposition 5 (Optimal fiscal policy) The fiscal policy that implements the efficient allocation displays

the following features:

(i) The (marginal) income tax rate is non-negative and increasing in city size;

(ii) The congestion discount rate is positive and increasing in city size;

(iii) If ρ = 0 then δ∗(a) = τ∗(a).

Proof In the text above.

Several comments are in order. First, allowing for endogenous adjustments at the extensive

margin of the urban system changes the qualitative features of the optimal fiscal policy in a

fundamental manner. With an exogenous extensive margin, Proposition 4 suggests that the

optimal fiscal policy is to subsidize labor earnings and tax urban congestion. By contrast,

Proposition 5 establishes that the optimal tax and discount rates are both positive. Second,

the optimal fiscal policy is progressive even though agents are homogeneous. This is because

congestion dis-economies dominate agglomeration economies at the margin; and because even

if agents are homogeneous ex ante, they are ex post heterogeneous in their location choices

across sites of different quality. Finally, when all land is owned locally and the allocation is
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the one with local politics, the optimal policy is to set a common, city-specific tax rate on labor

and land earnings net of congestion costs. In all cases, tax rates are increasing in nominal

earnings but this does not necessarily violate the principle of treating equals equally: at the

free-migration allocation, equals end up being equally well-off anyway, regardless of the tax

scheme that is implemented.

5. Population (mis)allocations and welfare costs

We now explore some quantitative implications of the model. We are most interested in putting

numbers on the extent of population misallocations — both at the extensive and the intensive

margins — and to evaluate the welfare costs due to these misallocations. First, we briefly

describe the model calibration — leaving a more detailed discussion for Appendix C. Second,

we simulate the system of cities under the three solution concepts (federal optimum, free

migration, and local governments). Finally, we provide estimates of the welfare losses due to

the misallocation of population. Using a system of cities calibrated to the United States, we find

that the largest cities may be undersized by about a third, the smallest cities are too big, and

that about twice too many sites may be developed. The welfare losses are fairly small under

free migration, equal to only around 1% of real consumption. Yet, they can be substantial with

local governments, reaching about 18% of real consumption.

5.1 Model calibration

Table 2 summarizes the calibration of the amenity distribution and the selection of the urban

and fiscal parameters. To estimate the amenity distribution, we use two moment condi-

tions and data on wages and population from the American Community Survey. The first

moment condition relates wages to amenities, population, and agglomeration: wj = ajn
ǫ
j .

The second moment scales amenities to ensure that gross congestion costs are 15 percent of

wages: ∑j an
γ
j = 0.15 ∑j wj , for some scaling parameter a > 0. For both moments, we use

wages controlling for skill differences. Using the calculated values for aj , we fit a power law,

ln(aj) = β0 + β1 ln(rank), to match the observed upper tail of the distribution and use the

predicted values β̂0 and β̂1 to parametrize G(a).

We consider a range of parameter values for agglomeration and congestion from the litera-

ture. Our base estimates use ǫ = 0.03 and γ = 0.25, which implies Φ∗ = (1+ ǫ)/(1+ γ) = 0.824.

Similarly, we consider a range of values for taxes, land rebates, and urban discounts to

match the U.S. Our base estimates use τ = 0.34, ρ = 1, and δ = 0.17, which implies

Φ∗ > Φ = (1 − τ)/[(1 − δ)(1 + ργ)] = 0.636. This parameter configuration leads to free

migration and local politics allocations featuring undersized big cities and oversized small

cities (see Table 1). We consider several other cases of Φ and Φ∗ in Table 3.
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Table 2: Parameter values used for the simulations.

Parameter Baseline Range Source

Urban parameters
Agglomeration ǫ 0.03 [0.03, 0.06] Combes et al. (2008); Rosenthal and Strange (2004);

Melo et al. (2009)
Congestion γ 0.25 [0.25, 0.50] Combes et al. (2016); Glaeser and Gottlieb (2009);

Saiz (2010); Desmet and Rossi Hansberg (2013)
Fiscal parameters
Tax rate τ 0.34 [0, 0.34] Albouy (2009)
Land rebate ρ 1 [0, 1] Jimenez (1984)
Urban discount δ 0.17 [0, 0.17] Albouy and Lue (2015)
Estimated distribution of amenities G(a)
Wage moment aj = wjn

−ǫ
j From wages & population in Seegert (2013)

Urban cost moment a = 0.15(∑j wj)/(∑j n
γ
j ) Gross urban costs = 15 % of wages

Notes: This table reports our calibration. We vary the different parameters selectively within the indicated ranges as robustness checks. In our model, a
parametrizes the productivity of the site. We estimate a using two moment conditions and data on wages and population from the American Community
Survey. Wages are mincerized and populations combined into metropolitan areas, using the calculations in Seegert (2013).

Table 3: Parameter values and fiscal externalities

Case Parameters Optimal Private

ǫ γ τ ρ δ Φ∗ Φ

Base 0.03 0.25 0.34 1 0.17 0.824 0.636
High Agglomeration 0.06 0.25 0.34 1 0.17 0.848 0.636
High Congestion 0.03 0.5 0.34 1 0.17 0.687 0.530
Developing 0.03 0.25 0 0 0 0.824 1.000
Land Reform 0.03 0.25 0 1 0 0.824 0.800

The parameters (ǫ,γ, τ , ρ, δ) capture agglomeration, congestion, tax rate, land rebate, and urban discount,
respectively. The optimal ratio Φ∗ = (1 + ǫ)/(1+ γ) and the private ratio Φ∗ = (1 − τ )/((1− δ)(1 + ργ)).

The second and third rows of that table consider a doubling of the agglomeration and

congestion parameters. In both cases, Φ∗ > Φ remains true. The fourth row considers the

benchmark where all of the fiscal parameters are set to zero (τ = ρ = δ = 0), which could

characterize the extreme case of a developing country with weak property rights and no

taxation. In contrast to the other cases, Φ∗ < Φ holds under that parameter constellation,

which features oversized large cities in the free migration allocation and may feature oversized

large cities in the local politics allocation (see Table 1). The fifth row in Table 3 shows that even

if τ = δ = 0, just having to purchase land fully upon migrating, which corresponds to ρ = 1,

is sufficient for Φ∗ > Φ to hold. The ratio Φ is likely smaller for oecd countries other than the

U.S. For example, France has a higher tax rate and no mortgage interest deduction, implying

a lower Φ. Many countries, such as Canada, also have strong fiscal equalization systems that

greatly favor smaller cities and non-urban areas (Albouy, 2012).

5.2 Simulation of city sizes under the three solution concepts

We simulate a system of cities with a total urban population of 280 million people using the

three solution concepts — optimal allocation, free mobility, and local politics. Because the

actual distribution of population is somewhere between the free mobility and local politics
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allocations, these solution concepts provide bounds on the misallocation of the actual distri-

bution of population. Our simulations highlight three determining factors of the distribution

of population. First, government policies such as taxes, land rebates, and urban cost discounts

have a large impact on that distribution. Varying government policies in the simulations

demonstrates that output is not a sufficient statistic for optimal government policies. In fact,

policies that increase total output can often decrease total welfare. Second, the optimal distribution

of population must balance both the tradeoff between agglomeration and congestion inside

each city (intensive margin) and the tradeoff between overfilling productive cities and creating

new, less productive cities (extensive margin). Finally, heterogeneity in city amenities is a

fundamental feature of cities and interacts with both government policy and the extensive

margin in ways that exacerbate the welfare consequences of population misallocations.

Figure 8: Distribution of city sizes and comparative statics.

(a) Three solution concepts. (b) Varying fiscal parameters.
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Figure 8 graphs the distribution of population in the traditional format, with log popu-

lation on the horizontal axis and log rank (where the largest city is rank 1) on the vertical

axis. As one can see, the city-size distributions match closely the empirical distribution in

Gabaix (1999), where the size distribution of large cities, in particular, follows Zipf’s law. In

panel (a), the free-migration distribution (solid curve) features undersized large cities and

oversized small cities relative to the optimal distribution (dashed curve), which can be seen

by the free-migration distribution being a clockwise rotation of the optimal distribution. The

local-politics distribution (dotted curve) consists of substantially more numerous and smaller

cities, which again can be seen by the local-politics distribution being a clockwise rotation of

the optimal distribution.

Panel (b) of Figure 8 graphs two free-mobility distributions for our baseline calibration. In

the first one, we use the fiscal parameters of the U.S.; in the second one, we simulate a ‘devel-

oping country’ with no taxes and weak property rights. The developing country case features

28



larger large cities and smaller (and fewer) small cities relative to the actual calibration using

U.S. fiscal parameters. The magnitudes in this comparison suggest that the fiscal parameters

have the potential to distort the size distribution of cities substantially. Put bluntly, with the current

government policies in the U.S., New York and Los Angeles are quite substantially undersized.

In contrast, San Bernardino, California, is 60 percent too large in the free-migration allocation.

As can be seen in Figure 8, an implication of under-populating the largest cities on superior

sites is that more cities, in inferior sites, are populated than need be.

5.3 Welfare costs

Table 4 reports statistics on the differences in population distributions and the welfare conse-

quences of the population misallocations. The first column reports statistics for the baseline

estimates, which are calibrated to the U.S. urban system. The optimal distribution suggests the

largest city of optimal size would host 30 million people. By contrast, the free-mobility and

local-politics distributions have largest cities with populations of 14.8 million and 58 thousand,

respectively. As a result, the free-mobility allocation populates almost four times as many cities

as the optimal allocation, whereas the local-politics allocation populates a myriad of additional

sites. In total, 61 percent of the population in the free-mobility allocation is misallocated relative

to the optimal allocation. The welfare costs of these misallocations are 67 billion us dollars —

about 1% — with free mobility, and 1.12 trillion us dollars — about 18% — with local politics.22

The impact of government policy on the distribution of population is shown by contrasting

the baseline estimates (Column 1 in Table 4), calibrated to the U.S. and its fiscal parameters,

with the developing country estimates (Column 2 in Table 4). The latter is an extreme example

with no taxes and weak property rights. In contrast to the baseline calibration, the latter

allocation overcrowds the largest cities and populates too few sites. With weak property rights

and no taxes, the largest city in the free-mobility allocation hosts almost 50 million people, 20

million more than in the optimal allocation and 35 million more than in the baseline calibration.

As a consequence of overcrowding the largest cities, the free-mobility allocation populates

only 43 sites, less than half the number of sites in the optimal allocation and substantially

fewer than in the baseline calibration. Table 4 shows that the welfare consequences of these

misallocations are even smaller than in the U.S. baseline case. It is worth noting that, because

the free-mobility allocation overpopulates the cities with the highest production amenities,

output at the free-mobility allocation is larger than at the optimal allocation. In other words,

gross output is a poor measure of welfare because welfare is output net of congestion costs,

22Remarkably, the welfare consequences in this simulation are comparable to those of Behrens et al. (2011),
Desmet and Rossi-Hansberg (2013), and Behrens, Duranton, and Robert-Nicoud (2014), though the underlying
microeconomic foundations of all four papers are entirely different and though Behrens et al.’s model features a
more realistic geography than our own. Market access is encapsulated in the distribution of a’s in our model. It
depends on the distribution of bilateral trade costs in Behrens et al. (2011) and is thus endogenous.
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Table 4: Welfare calculations under the three solution concepts.

(1) Baseline (2) (3) High (4) High (5) Low (6) High
(Developed) Developing agglomeration congestion heterogeneity heterogeneity

Largest city
Optimal 30,525,000 30,525,000 50,000,000 2,760,000 11,370,000 30,525,000
Free mobility 14,790,000 49,915,000 44,410,000 1,740,000 4,870,000 40,900,000
Local politics 58,500 457,000 1,434,700 39,800 58,500 58,500

Smallest city
Optimal 230,000 230,000 10,990,000 100,000 315,000 230,000
Free mobility 25,000 260,000 830,000 25,000 40,000 15,000
Local politics 13,300 150,200 556,600 20,400 30,300 3,000

Number of cities
Optimal 99 99 9 804 199 99
Free mobility 392 43 33 1,633 796 165
Local politics 17,539 1,557 418 12,541 8,424 20,000

Welfare
Optimal 22,200 22,200 25,114 21,548 23,530 22,200
Free mobility 21,960 22,060 24,737 21,427 23,333 20,358
Local politics 18,148 20,148 21,183 19,354 21,721 13,365

Output
Optimal 28,977 28,977 35,495 24,630 28,688 28,977
Free mobility 27,002 30,313 32,955 23,682 27,099 27,444
Local politics 19,649 22,896 25,000 19,990 23,517 14,470

Notes: Baseline (Developed) has a calibration with [τ , ρ, δ, ǫ,γ] = [0.34, 1, 0.17, 0.03, 0.25]. Developing calibration [τ , ρ, δ, ǫ,γ] = [0, 0, 0, 0.03, 0.25]. High agglomeration
[τ , ρ, δ, ǫ,γ] = [0.34, 1, 0.17, 0.06, 0.25]. High congestion [τ ,ρ, δ, ǫ,γ] = [0.34, 1, 0.17, 0.03, 0.5]. Baseline heterogeneity a = 19,550 × rank−0.0333, comes from estimating
the function log(aj ) = β0 + β1log(rank) from the calculated a values. We calculate the a values from the moment condition aj = wjn

−ǫ
j using data on wages, wj ,

and population, nj , from the American Community Survey, where skill differences have been controlled for in the wage. Low heterogeneity, a = 19,550× rank−0.016.
High heterogeneity, a = 19550 × rank−0.066.

and some allocations may feature massive excessive congestion. The presence of excessive

congestion suggests a key role for taxes to correct for the congestion externality.

The impact of agglomeration economies and congestion diseconomies on the distribution

of population is shown in Columns 3 and 4 of Table 4. Column 3 doubles the agglomeration

parameter to 0.06 and Column 4 doubles the congestion parameter to 0.5. Not surprisingly,

more population is allocated to the largest cities when agglomeration forces are stronger

and/or congestion diseconomies are weaker.

The impact of heterogeneity in amenities across cities is shown in Columns 5 and 6 of

Table 4, and its welfare effects are depicted in panel (a) of Figure 9. Changing the difference in

amenities across cities changes the tradeoff between increasing congestion in cities with high

amenity levels and populating cities with lower amenity levels. As expected, the impact of

heterogeneity is large. The reason for this is that the urban system operates at close to constant

returns to scale, i.e., the difference between agglomeration economies ǫ and urban costs γ is

relatively small. Small amenity changes then translate into large population changes by giving

better sites an additional advantage. To make the analogy with heterogeneous firms, small

cost advantages imply large differences in market shares when products are good substitutes.

In the case of cities, small differences in a imply large differences in population when γ − ǫ is

small. Although the parameters we have chosen for the ‘low’ and ‘high’ heterogeneity cases

are arbitrary, this exercise illustrates that getting those parameters right is of fundamental

importance in any quantitative exercise.

Last, to highlight the extensive margin tradeoff, panel (b) of Figure 9 compares the change in
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Figure 9: Welfare in the federal optimum and with free migration.

(a) Heterogeneity in amenities. (b) Extensive margin.
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average welfare as total population increases when additional cities can and cannot be created.

Average welfare decreases substantially faster when the number of cities is capped at 100

(dotted curve) than in the baseline case when the number of cities is allowed to grow (dashed

curve). This suggests that the ability to create new cities is critical to maintaining high welfare

as total population increases. This result has implications for urbanizing countries that tend to

concentrate population in a few large cities (World Bank, 2009). In countries like China, India,

or Brazil, the increasing urban population needs to be accommodated in an increasingly large

number of cities to mitigate the decreasing returns that operate sharply in individual cities.

6. Conclusions

The theory and evidence in this paper suggest that the received economic wisdom — that cities

are too big — is likely to fail in most developed countries. Fiscal externalities from taxes and

land purchases generally discourage urbanization. They discourage urban development as the

returns to land and labor are common resources, not fully given to migrants. Though not

necessary for our key result, local politics naturally keeps the best areas from being sufficiently

inhabited, thus resulting in the best areas being substantially undersized. Overall, we expect

to see an inefficient urban system, characterized by lower welfare, over-ruralization, and too

many minor cities developed on inferior sites. While the welfare costs of these misallocations

are small with free migration, they are large under local politics. Hence, local control over

land-use regulations leads to a seriously inefficient allocation of population across cities.

The circumstances involving urbanization in developing countries is less certain. Weak

taxation and incomplete property rights over land may limit the effective tolls migrants pay for

entering a city. This can easily cause the best sites in a country to become overcrowded. Local
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governments seem unlikely to have the power to stop this. Meanwhile, capital cities may be

prone to gigantism due to the concerns of central governments. Thus, the conventional wisdom

may still apply in some countries, with large cities being too big, and possibly too much urban-

ization overall. Nevertheless, our work highlights the importance of considering fiscal policy,

site heterogeneity, and incentives to develop before making specific policy recommendations

about whether urban development should generally be discouraged.
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Appendix material

This set of appendices is structured as follows. First, Appendix A contains the proofs of the

propositions. Second, Appendix B shows that the optimal allocation can be implemented by

perfectly competitive land developers, as in Henderson (1974a, b). Last, Appendix C contains

details on our data and the procedure used to calibrate the model.

Appendix A: Proofs

Preliminaries. The proofs are simplified through a change in variables for a and n(a), using

the notation

ni(a) ≡

(
ǫ

γ
a

) 1
γ−ǫ

and v(n(a)) ≡

[
n(a)

ni(a)

]γ−ǫ

.

Given the expressions in Lemma 1, we have vi ≡ v(ni(a)) = 1 and vp ≡ v(np(a)) = Φ. v gives

us the ratio of the city’s size relative to the social efficient scale, ni(a), raised to the power γ− ǫ.

Thus, it gives us the ratio of urban costs to urban benefits at the given n(a) relative to this ratio
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at ni(a), which replaces a as the underlying productivity parameter. We use this notation to

re-express the social and private, average and marginal, benefits as follows:

sab(n, a) = v
ǫ

γ−ǫn
γ
i

(
γ
ǫ
− v

)
= f

(
v; γ

ǫ

)

smb(n, a) = (1 + γ) v
ǫ

γ−ǫn
γ
i (Γ − v) = (1 + γ) f (v;Γ )

pab(n, a) = 1−τ
Φ

v
ǫ

γ−ǫn
γ
i

(
γ
ǫ
Φ− v

)
= 1−τ

Φ
f
(
v; γ

ǫ
Φ
)

pmb(n, a) = (1+γ)(1−τ )
Φ

v
ǫ

γ−ǫn
γ
i (ΓΦ− v) = (1+γ)(1−τ )

Φ
f (v;ΓΦ) ,

(A-1)

where f(v;C) ≡ v
ǫ

γ−ǫn
γ
i (C − v) is a function of v, parametrized by (a bundle of) parameters C;

and where (as defined in the main text)

Φ ≡
1 − τ

(1 − δ) (1 + ργ)
, Φ∗ ≡

1 + ǫ

1 + γ
, and Γ ≡

γ

ǫ
Φ∗.

Figure 10 depicts the general, quasi-concave shape of f as a function of v for a fixed value of

C. It is always a multiple of nγi , the urban costs at the efficient scale. We are generally more

interested in the positive values located between that of f at v = 0 and v = C.

Figure 10: Properties of f (v;C) for 1 ≤ C ≤ γ
ǫ
.

(0,0) v

f(v;C)

C
•

ǫ
γ
C

f(1;C)

1v

•

••

It is easy to show that at the maximum

arg max
v

f(v;C) =
ǫ

γ
C, and max

v
f(v;C) =

(
C
ǫ

γ

) γ
γ−ǫ (γ

ǫ
− 1

)
n
γ
i .

Using hat notation, x̂ ≡ dx/x, then n̂i = â/ (γ − ǫ), and v̂ = (γ − ǫ) (n̂− n̂i) = (γ − ǫ) n̂− â.

Taking into account the dependence of f on both v and implicitly on ni, we have

f̂ = −
γ
ǫ
v− C(

γ
ǫ
− 1

)
(C − v)

v̂+ γn̂i = −ǫ

γ
ǫ
v−C

C − v
n̂+

C

C − v
â. (A-2)

where the second expression reintroduces the original population and productivity notation.

Therefore, f is always increasing in a, for given n, if v < C; and increasing in n, for given a,
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if 0 < v < ǫ
γ
C and decreasing if ǫ

γ
C < v < C. We are generally interested in this latter range.

Substituting in the proper value of C, the relevant ranges of our four functions in (A-1) are

sab smb pab pmb
ǫ
γ
C 1 Φ∗ Φ Φ∗Φ

C γ
ǫ

Γ γ
ǫ
Φ ΓΦ

As far as values of C are concerned, the most relevant values obey 1 ≤ C ≤ γ
ǫ
. For v this

implies that ǫ
γ
< v < γ

ǫ
. For this range, the function f(1;C) = 1 has two real solutions, 1, and

v, a second value, which does not have a simple analytical expression, but by the continuity

of f(.;C) exists by the Intermediate Value Theorem. See Figure 10 for an illustration of v’s

existence.

Translating from (v,ni) back to n,a gives us relevant ranges of n for social and private,

average and marginal, benefits:

sab smb pab pmb

C = γ/ǫ C = Γ C = (γ/ǫ)Φ C = ΓΦ

n0 ≡
(
Ca ǫ2

γ2

) 1
γ−ǫ

(
a ǫ
γ

) 1
γ−ǫ

(
a ǫ
γ
Φ∗

) 1
γ−ǫ

(
a ǫ
γ
Φ
) 1

γ−ǫ
(
a ǫ
γ
Φ∗Φ

) 1
γ−ǫ

nmax ≡
(
Ca ǫ

γ

) 1
γ−ǫ

a
1

γ−ǫ (aΦ∗)
1

γ−ǫ (aΦ)
1

γ−ǫ (aΦ∗Φ)
1

γ−ǫ

Values of n outside these parameter ranges are generally not pertinent to the analysis.

A.1. Proof of Lemma 2 Consider the problem given by the Lagrangian

max
NR,a∗,n(a),µ

L ≡ F (NR) +
∫ a

a∗

n(a) [an(a)ǫ − n(a)γ ]dG(a) + µ

[
N −NR −

∫ a

a∗

n(a)dG(a)

]
.

The first-order condition with respect to µ is simply the adding-up constraint. The first-order

condition with respect to NR yields µ = F ′(NR), the necessary condition for (i). Using the

continuum of a The first-order necessary condition with respect to a∗ is

µ∗ ≤ a∗n(a∗)
ǫ − n(a∗)

γ = sab [n(a∗),a∗] , (A-3)

with equality if a∗ > a. Let k∗ = n∗(a∗)/ni(a∗) be the ratio of the optimal size of the worst

city relative to its efficient size. Solving for µ∗ from the smb using the notation in (A-1), with

(1 + γ)f
[
k
γ−ǫ
∗ ,Γ

]
, gives us the result of (iii)

µ∗ = (1 + γ) (Γkǫ∗ − k
γ
∗) [ni(a∗)]

γ . (A-4)

The precise value of a∗ needed for (ii) depends on the (unspecified) distribution G. Condition

(A-3) shows that the Lagrange multiplier is pinned down by the social average benefit of the
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site at the extensive-margin (or worst-populated site), a∗, if the extensive margin of urban

development is relevant. The multiplier also equals the marginal benefit of residing in the

rural area. The latter decreases in NR because F is concave in population.

The first-order condition with respect to n(a) for the intensive margin is

µ∗ ≥ a(1 + ǫ)n∗(a)
ǫ − (1 + γ)n∗(a)

γ , (A-5)

with equality for all sites a such that n(a) > 0. Using the smb expression in A-1 again and our

solution for µ∗, we have through a change of notation that

v
ǫ

γ−ǫ
∗ [ni(a)]

γ [Γ − v∗] (1 + γ) = (1 + γ) (Γkǫ∗ − k
γ
∗ ) [ni(a∗)]

γ .

Using the fact that [ni(a)]
γ = (a/a∗)

γ
γ−ǫ [ni(a∗)]

γ , this simplifies to

(a/a∗)
γ

γ−ǫ

[
Γv

ǫ
γ−ǫ
∗ − v

γ
γ−ǫ
∗

]
= Γkǫ∗ − k

γ
∗

for Φ∗ < v∗ < Γ by the second order condition. This range is tightened further into k∗ < v∗ < Γ

by our solution for a∗. These results translate immediately into result (v). Note this solution

may be written as (a/a∗)
γ

γ−ǫ = f [kγ−ǫ
∗ ,Γ ]/f [(n∗/ni)γ−ǫ,Γ ]

To see that optimal city size is increasing in a, take the elasticity formula (A-2) for smb, using

C = Γ and f̂ = 0, which means

ǫ

γ
ǫ v∗ − Γ

Γ − v∗
n̂∗ =

Γ

Γ − v∗
â.

By cross-multiplying the result in (iv), it becomes apparent

n̂∗

â
=

1

ǫ

Γ
γ
ǫ
v∗ − Γ

once v is substituted in for. This expression is positive over the relevant range v > 1 > Φ∗.

Furthermore, it is possible to show that

v̂∗

â
=

γ

ǫ

Γ − v
γ
ǫ
− v

(A-6)

which is positive, implying that the ratio of n∗ to ni continues to grow, albeit at a declining

rate. If A is unbounded above, then at a → ∞, v∗ → Γ , and n∗(a) → Γ
1

γ−ǫni(a).

Clearly, a∗ > 0 must hold if F ′(N) > 0, since smb(n,0) = −(1 + γ)nγ < 0 for all n >

0. In other words, it is always better to work in the countryside than live in a completely

unproductive city due to urban costs. This establishes (i) for the extensive margin. This puts a

limit on k∗ < (γ/ǫ)
1

γ−ǫ .

As will be shown in Proposition 1, da∗/dN < 0, which implies that dµ∗/dN < 0. Since

NR +N = N , then dµ∗/dNR > 0, there is a unique rural population NR ∈ (0,N).

This completes the proof. �
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A.2. Proof of Proposition 1. To see (i), take the ratios of sab to smb in (A-1) evaluated at v∗ to

obtain

sab∗(a) =
1

1 + γ

γ
ǫ
− v∗

Γ − v∗
, and smb∗ =

1

1 + ǫ

Γ − Φ∗v∗

Γ − v∗
µ∗.

Substituting in for v∗ creates the required formula in (i). Evaluated at v∗(a∗) = k
γ−ǫ
∗ , we have

sab∗(a∗) =
(
γ
ǫ
kǫ∗ − k

γ
∗

)
[ni(a∗)]

γ , which equals µ∗ if k∗ = 1, when a∗ > a. Taking the elasticity,

ŝab∗ =
γ
ǫ
(1 − Φ∗)v∗

(γ
ǫ
− v∗)(Γ − v∗)

from Φ∗ < 1 and 1 < v < Γ < γ
ǫ
. The elasticity of sab with respect to v grows with v from the

denominator. In logarithmic scales, the optimized ln[sab∗(a)] is convex in ln(n).

To establish (ii), observe that the Lagrangian can be rewritten as follows:

L∗

N
= µ∗ +

F (NR)− F ′(NR)NR

N
+

1

N

∫ a

a∗

n∗(a) [an∗(a)
ǫ − n∗(a)

γ − µ∗]dG(a).

From the first-order condition (A-5), we have an∗(a)ǫ − n∗(a)γ = µ∗ + γn∗(a)γ − aǫn∗(a)ǫ.

Inserting this into the Lagrangian above, and using µ∗ = F ′(NR), yields

L∗

N
= µ∗ +

NR

N

[
F (NR)

NR
− F ′(NR)

]
+

1

N

∫ a

a∗

n∗(a) [γn∗(a)
γ − aǫn∗(a)

ǫ]dG(a).

The first expression in brackets is positive because of decreasing returns in the rural sector,

whereas the second bracketed expression is increasing in n(a) and zero at n(a) = ni(a). Since

n∗(a) > ni(a), it follows that the integral term is positive. Then,

L∗

N
> µ∗ =

∂L∗

∂N
, (A-7)

where the last equality comes from the definition of the Lagrangian and the envelope theorem.

Expression (A-7) shows that there are decreasing returns in the economy because the marginal

Lagrangian is always below the average Lagrangian. Adding people to the system reduces

average welfare. This occurs from both diminishing returns in the rural sector (F ′′ < 0) and

urban system. To see the latter, and to prove (iii), note that we can apply the same reasoning

as above to the social average benefit in all the cities, given by

SAB = µ∗ +
1

N

∫ a

a∗

n∗(a) [γn∗(a)
γ − aǫn∗(a)

ǫ]dG(a) > µ∗ = smb.

Since the social average benefit exceeds the social marginal benefit, adding urban dwellers to

the cities reduces welfare.

Finally, holding rural population constant, the sources of the decreasing urban returns (ii)

can be shown by differentiating the first-order condition (A-5) to obtain:23

∂µ∗

∂N
=

∂n∗(a)

∂N

[
a(1 + ǫ)ǫn∗(a)

ǫ−1 − (1 + γ)γn∗(a)
γ−1

]
.

23We hold NR fixed and investigate the implications of an exogenous increase in N . This is different from a
redistribution from NR to N , which is more complicated to analyze.
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The term in brackets is negative by the second-order condition of the optimization problem.

Hence, ∂µ∗/∂N and ∂n∗(a)/∂N have opposite signs. By differentiating the adding-up con-

straint for the urban population, we get:

1 =
∫ a

a∗

∂n∗(a)

∂N
dNdG(a)− n∗(a∗)

∂a∗

∂N
. (A-8)

Since the sign of ∂µ∗/∂N is the same as that of ∂a∗/∂N , it is then obvious that ∂a∗/∂N < 0

and ∂n∗(a)/∂N > 0 must hold, since opposite signs cannot yield a positive value as required

by the left-hand side of (A-8). This completes the proof. �

A.3. Proof of Proposition 2. Part (v) follows directly from Lemma 1. Substituting in v = Φ into

the smb equation in (A-1), it is quickly calculated that

smbp = smb[np(a),a] = Φ
ǫ

γ−ǫ [Γ − Φ] (1 + γ) [ni(a)]
γ .

Combining this with the solution for µ∗,

smbp

smb∗
=

Φ
ǫ

γ−ǫ [Γ − Φ]

Γkǫ∗ − k
γ
∗

(
a

a∗

) γ
γ−ǫ

=
f (Φ,Γ )

f
(
k
γ−ǫ
∗ ,Γ

)
(

a

a∗

) γ
γ−ǫ

(A-9)

which may hold for values a < a∗.

In order for the optimum to be achieved, this ratio needs to stay equal to one. This cannot

happen if a varies. Therefore the optimum is only obtained if a = a∗ for all developed asites,

and Φ = k
γ−ǫ
∗ , which will be one, unless all sites are occupied. This is case (ii).

If Φ < k
γ−ǫ
∗ , case (i), then np(a∗) = Φ 1

γ−ǫ
ni(a∗) < k∗ni(a∗) = n∗(a∗), and therefore, the

optimal marginal site is undersized. All cities with a > a∗, will be undersized, since v̂∗ is

positive for 0 < v < Γ , meaning that the gap between the optimum and the political allocation

will continue to grow. If k∗ = 1, so that a∗ > a, then sites with a < a∗, are “too big” in the sense

that they should not have been developed. For a given N , these will exist due to the adding

up constraint.

If Φ ≥ Γ , case (iv), then the smallest optimal site is oversized since np(a∗) = Φ
1

γ−ǫni(a∗) ≥

Γ
1

γ−ǫni(a∗), while n∗(a) < Γ
1

γ−ǫni(a) for any a. Or simply v∗(a) < Γ
1

γ−ǫ < Φ
1

γ−ǫ = vp(a) for all

a. Moreover, the value of smbp is negative for all a, which never occurs at the optimum (better

to not have a city at all), and hence, np is clearly too large.

In the intermediate case of kγ−ǫ
∗ Φ < Γ , the marginal optimal city, a∗, is too large. Nonethe-

less, the optimal elasticity v∗ is positive, so that the ratio of the v∗ to vp rises with a, and can

exceed it, so that some cities are too small. If A is unbounded, then v∗ → Γ , and there will be

a point a∗p, where the political allocation is optimal. Cities with a > a∗p, will be undersized with

local politics. This covers case (iii) and finishes the proof.
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A.4. Proof of Lemma 3 The proof for Lemma 3 is nearly identical to that of Lemma 2, using

results based on f , with previous values of C multiplied by the parameter Φ. The rest of the

mathematics is straightforward and does not need repeating.

It remains to be shown that the solution is constrained-efficient. Since relative values of nm

are determined by (iv), the question involves the determination of am and km. The argument is

that free entry in city development will continue so long as profits are positive. This will occur

for any city with n ≥ np. Therefore, migrants will continue to inhabit marginal sites, so long

as they can.

A.5. Proof of Proposition 3. Substituting in the solution for vm, the social marginal benefit

evaluated at the decentralized equilibrium city size nm(a) is

smbm(a) ≡ smb(nm(a), a) = µm
1 + ǫ

1 − τ

Γ − vm

Γ − (Φ/Φ∗)vm
. (A-10)

This establishes part (v) with elementary substitution. Taking the ratio of this to smb∗(a),

smbm

smb∗
= Φ

ǫ
γ−ǫ

Γ − v
γ
ǫ
Φ− v

(
am

a∗

) γ
γ−ǫ

γ
ǫ
kǫm − k

γ
m

Γkǫ∗ − k
γ
∗

. (A-11)

This expression increases in vm if Φ < Φ∗, which is the same condition for n̂m/â < n̂∗.

With these results in hand, the proof is straightforward, especially with the illustrations in

Figures 7 and 11. First cover cases with a∗ > a, starting with case (i).

When Φ ≤ Φ∗ the population at the optimal extensive margin is too low np(a∗) < nm(a∗),

while the elasticity of nm is (weakly) less than that of n∗. Therefore cities from a∗ to a will have

nm(a) < n∗(a). By the population constraint, there is left-over population that must go into

sites worse than a∗, and so am < a∗. Thus, too many sites are occupied, and all of those sites

that should be occupied are underpopulated. Sites that should not be populated are trivially

overpopulated.

When Φ∗ < Φ < 1 the population at the optimal extensive margin is too low np(a∗) <

nm(a∗), while the elasticity of nm is greater than that of n∗. Whether or not am > a∗, we have

nm(am) = np(am) < n∗(am) ≤ nm(am). Therefore, the worst site is under-populated. If the

range of [am,a] is sufficiently large, then eventually the greater elasticity of nm with respect to

a will cause it to overtake nm(a∗). If it never does, then by the population constraint, there will

be too many cities. If it does eventually, then it is possible that there will be too few cities if

the best sites are sufficiently crowded.

Take the all-important knife-edge case of Φ = 1. When a is homogenous, am = a = a, the op-

timum is reached. If a 6= a, then am ≤ a∗ is impossible since nm(a) > n∗(a) for a > am because

of the greater elasticity. This would violate the population constraint. Therefore, it must be that

am > a∗ and that there are too few cities. However at am, nm(am) = ni(am) < n∗(am) because
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Figure 11: Optimal and free-migration city sizes for different Φ.

of Lemma 2. The worst sites must be underpopulated. The population constraint requires that

eventually nm(a) > n∗(a) for some value of a > am, and therefore the most productive cities

will be too large.

If 1 < Φ < Γ , it must still hold that am ≥ a∗. However, whether nm(am) < n∗(am) depends

on Φ and the distance between am and a∗. As with Φ = 1, the population constraint eventually

requires cities to be too large.

Finally, if Φ ≥ Γ then the floor populations for nm(a) of np(a) are always larger than n∗(a),

as in Propostion 2.

When all sites are filled in free-migration am = a, then either the results of am < a∗ from

above hold, or a∗ = am = a and there is no extensive margin in either solution. In this case, if

Φ < Φ∗, the elasticity of nm is lower than that of na, so larger cities will be relatively smaller

than what is optimal. By the population constraint, they will be absolutely smaller, while the

smaller, inferior cities must be absolutely larger. The opposite holds true when Φ > Φ∗, while

the optimum will hold with Φ = Φ∗. This completes the proof.

A.6. Proof of Proposition 4. We see from (23) that the smb is equalized across sites if and only if

Φ = Φ∗, which is a necessary condition for optimality as in (i). Yet, it is not sufficient since not
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all sites need to be occupied (i.e., the planner has to adjust optimally the extensive margin).

This is done as follows. We have, by definition, Γ/Φ = γ/ǫ. Evaluating condition (15) at a = a∗

yields the condition

Γ

(
n∗

ni

)ǫ

−

(
n∗

ni

)γ

= Γkǫ∗ − k
γ
∗ .

Using condition (22), and the equality np(a) = ni(a)Φ1/(γ−ǫ), and evaluating it at a = am = a∗,

we also have

Γ
Φ
kǫm − k

γ
m.

Γ
Φ

(
n∗
ni

)ǫ

Φ−ǫ/(γ−ǫ) −
(
n∗
ni

)γ

Φ−γ/(γ−ǫ)
=

Γ
Φ
kǫm − k

γ
m[

Γ
(
n∗
ni

)ǫ

−
(
n∗
ni

)γ]
Φ−γ/(γ−ǫ)

= 1.

Substituting the foregoing expression yields

Γ
Φ
kǫm − k

γ
m

Γkǫ∗ − k
γ
∗

= Φ−γ/(γ−ǫ).

This equation has the solution km = k∗Φ
−1/(γ−ǫ), which establishes (ii) since Φ = Φ∗ by (i).

Appendix B: Competitive land developers

Local land developers attract urban dwellers by offering (possibly negative) subsidies, s, such

that the net utility is weakly larger than the economy-wide utility level, denoted by ud, where

subscript ‘d’ stands for ‘developers’. They collect aggregate land rents in the site they develop.

Each developer takes the federal fiscal parameters τ , δ, and ρ as given. A developer who owns

site a solves the following maximization problem:

max
n,s

π(n, s; a, ud) = (1 − δ)γ(1 − ρ)nγ+1 − ns

s.t. ud ≤ (1 − τ)anǫ − (1 − δ)(1 + γ)nγ + s,

where the first term in π is the aggregate land rent collected and the second term is the cost of

the subsidy to attract n people to the site. Local land developers set agents at their reservation

utility, i.e., s = ud − (1 − τ)anǫ + (1 − δ)(1 + γ)nγ . Plugging s into the profit and optimizing

with respect to n, the first-order condition is given by

a(1 − τ)(1 + ǫ)nǫ − (1 − δ)(1 + ργ)(1 + γ)nγ − ud [1 + E(ud,n, ·)] = 0, (B-1)

if n(a) is positive (the term on the left-hand side is negative otherwise). In (B-1), E(·) denotes

the elasticity of ud with respect to n, and the dot stands for the choices of the other developers.

In our case with a continuum of sites, developers are atomistic and have no impact on

the aggregate variable ud (like in the case with monopolistically competitive firms). Hence,

E(ud,n, ·) ≡ 0 for all developers, so that condition (B-1) simplifies to

a(1 − τ)(1 + ǫ)nǫ − (1 − δ)(1 + ργ)(1 + γ)nγ = ud (B-2)

44



for all developed sites. Observe that (B-2) is isomorphic to (A-5) if τ = δ = ρ = 0, i.e., in the

absence of federal taxation, with ud instead of µ∗. Then, nd(a) = n∗(a) if ud = µ∗. Note that

ud > µ∗ is not possible (the allocation with developers cannot Pareto dominate the optimal

allocation by definition). Assume hence that ud < µ∗. Then, cities are more populated and

fewer than at the optimal allocation. This implies that land developers who own empty land

with a slightly below a∗ can attract workers by offering them a utility higher than ud and yet

make profits. To see this, use (B-2) to solve for ud and substitute into the definition for land

developer profit to see that the profit is positive for nd(a) > n∗(a). Thus, ud = µ∗ and the

allocation with developers coincides with the federal optimum allocation.

It is easy to verify that the equilibrium profits of land developers are strictly positive for all

a > a∗. When land is homogeneous, the equilibrium profits of land developers are zero. Here,

positive rents remain because sites are (vertically) differentiated goods.24

Last, note that in the presence of federal taxation, (B-2) and (A-5) no longer coincide. In that

case, the allocation with developers is no longer optimal. The reason is that the developers

take into account the fiscal wedges when attracting people to their sites. If τ and δ are large,

developers have to offer high subsidies to attract agents — especially on sites with high a —

but are heavily taxed by the federal government on their profits (the land rents). Hence, large

cities may end up being too small.

Appendix C: Parametrization

C.1. Economic parameters. For the elasticity of agglomeration economies, ǫ, we consider 0.03

from French estimates that control for sorting (Combes, Duranton, and Gobillon, 2008). For the

elasticity of urban congestion, γ, we use 0.25, which corresponds roughly to the elasticity of 4

percent with respect to income from Combes et al. (2016), after dividing it by 15 percent. For

robustness, we also consider ǫ = 0.06, closer to traditional estimates (e.g., Ciccone and Hall,

1996), and γ = 0.50, based on the traditional mono-centric city model with linear transportation

costs. See also Rosenthal and Strange (2004) and Melo, Graham, and Noland (2009), who

review the literature and report estimates of ǫ in the range of [0.01, 0.8]. The value of γ = 0.5 is

used recently in Saiz (2010) and Desmet and Rossi Hansberg (2013). For lower values of γ see

also Glaeser and Gottlieb (2009).

24It is useful to make the analogy between our problem at hand and that of imperfect competition between
firms. In our model, developers differ by ‘productivity’ (i.e., the quality of the site they own), but varieties
(i.e., sites) are viewed as perfect substitutes by mobile workers (consumers). The developer with the lowest cost
(i.e., the best site) cannot capture the whole market because her production cost is convex in city size (because
of increasing urban costs). This limits the size of any city. Since all agents eventually have to end up in some
location — they can ‘opt out’ of the urban system, but there are decreasing returns in the rural area — this implies
that some of the less efficient developers also end up developing sites. The outcome with developers is optimal
when developers cannot strategically manipulate ud, because for any site there always exists another one that is
arbitrarily similar, which constrains developers since sites are viewed as perfect substitutes by mobile agents.
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C.2. Fiscal parameters. As our base case, meant to approximate the U.S., we choose a tax rate

of τ = 0.34, following Albouy (2009). This rate incorporates the average marginal income tax

rate (net of federal transfers), but also the net-of-benefit burden of payroll tax rates (Medicare

and Social Security), as well as an average sales tax rate applied to consumption. The value of

δ = 0.17 accounts for tax advantages to owner-occupied housing, such as the mortgage interest

deduction, and the lack of sales taxes on housing consumption. The discount for transportation

costs is roughly similar due to the fact that the time costs of commuting — which account for

the majority of commuting costs — are not taxed. See Albouy and Lue (2015) for more. Finally,

ρ = 1 is based on the assumption that migrants either pay rent or purchase land (i.e., housing)

in the city they migrate, too. While we do not model the ownership of land, such ownership

in a ‘home city’ would not negate the opportunity cost of not selling the home to another

potential migrant.

Turning to a stylized developing economy, we choose τ = δ = ρ = 0 based on the idea that:

(i) income taxes are low, or tax evasion is ubiquitious, so that τ = 0; (ii) transfers and subsidies

for land and commuting are inexistent, i.e., δ = 0; and (iii) property rights are weakly enforced

so that many urban migrants can squat on land, i.e., ρ = 0.

C.3. Distribution of productive amenity, a. We next choose a parametrization for the distribution

G(a) of sites. There appears to be considerable heterogeneity in productivity across U.S.

cities. We estimate G(a) from U.S. population and wage estimates which control for worker

characteristics (see Albouy, 2016). We shrink the estimates by a factor of 2/3 to correct

for possible unobserved sorting (Glaeser and Maré, 2001). The productivity parameters are

inferred from a = wn−ǫ, and they are independent of any solution concept for city sizes

(see Section 3). The empirical (productivity) distribution, depicted by the solid black line in

Figure 12, appears to be close to log-normal, with a log-mean of 5.06 and a log standard

deviation of 0.04. This empirical distribution should not be taken as the literal distribution

G(a) of potential sites, however, since we observe only a truncated distribution (the sites that

are developed). There are likely to be an abundant number of sites with low productivity. Yet,

most of them are not observed as there are no cities on them. Also, sites may be inhabited for

advantages other than productivity, such as quality of life. The lower the productivity of a site

is, the better it must be in other positive unobserved characteristics for it to be observed in our

sample, i.e., for a city to be developed there. With this insight, we model G(a) with a Pareto

distribution, whereby the frequency of sites a diminishes with their quality at a constant rate.

The rationale for using a Pareto distribution is that: (i) it is virtually indistinguishable from the

empirical log normal distribution in the upper tail, thus providing a good approximation of

the distribution of high-productivity sites where we observe cities; and (ii) it has a much larger

mass on low-productivity sites which, as argued above, are clearly underrepresented in the

observed sample of city sites. While we do not — by definition — observe the sites on which
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there are no cities, the idea that there are ‘many’ of them implies that the Pareto distribution

provides a good approximation.

Figure 12: Fitted values of ln[1 −G(a)] and g(a) with ǫ = 0.03, γ = 0.25.
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With a Pareto distribution, the tail distribution ln [1 −G(a)] of the true distribution should

decrease at a constant rate. Fitting the entire empirical distribution produces a distribution

with a relatively small Pareto parameter of 10.7, thus implying that the distribution is relatively

dispersed. But if we look instead at the upper 150 cities, located to the left of the mode, the

estimated Pareto parameter is 32.2. This is likely to be more accurate, since superior sites

are more likely to be inhabited and therefore observed. Furthermore, the fit of the upper tail

appears to be far more accurate. We thus extrapolate a similar shape parameter of 30 for the

entire distribution of a, using a truncated Pareto distribution that begins at the lowest value of

ln a = 4.95 and stops at ln a = 5.20.25 That distribution is depicted by the purple long-dashed

distribution in Figure 12, and we henceforth take it as our benchmark. We also consider Pareto

parameters that are twice or half the size — thereby implying different degrees of heterogeneity

in the distribution of sites — for comparison.

C.4. Fiscal parameters and city sizes. Figure 13 depicts the regions of fiscal parameter values for

τ , δ, and ρ that generate the different cases summarized in Table 1 for our benchmark values

of ǫ = 0.03 and γ = 0.5. The left panel graphs the congestion rebate parameter, δ, against the

federal tax rate, τ , assuming ρ = 1. The unit square is divided into four gray-shaded regions:

the two darkest delimit the parameter ranges for which free-migration leads to oversized cities.

25 By the central limit theorem, Lee and Li (2013) show that a is log-normally distributed when it is the product
of numerous amenities that enter multiplicatively into a. The authors do not consider the case of truncated
distributions, however.
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Figure 13: Fiscal policies and expected solutions.

(a) Congestion rebate and federal tax rate. (b) Land-ownership and congestion rebate.
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Observe that the darkest shade of grey delimits the parameter space for which cities are too

few and oversized at both the free migration equilibrium and the local politics allocation. This

case occurs for a narrow range of fiscal parameters that does not seem to characterize any fiscal

system, such as a discount rate that is higher than the tax rate. The lighter two gray zones

characterize combinations for which local politics leads to too many cities, with undersized

large cities and trivially oversized small cities. The free migration allocation also features these

properties for parameters in the lightest area. This areas includes values (τ , δ) = (0.34, 0.17)

that apply to the U.S., and most developed oecd countries, which feature significant taxes and

property rights over land. As Figure 13 shows, this configuration arises for a ‘large’ subset of

parameters values and can, therefore, not be dismissed as a ‘rare special case’.

The right panel of Figure 13 varies the land-ownership parameter ρ and the congestion

rebate δ. It emphasizes the distorting role of local land ownership on the urban system at the

local politics allocation. Local incentives to reduce the size of a city increase in δ and decrease

in ρ. Thus, the local politics allocation is more likely to feature undersized (large) cities for

parameter configurations that belong to the north-west space. Observe also that when rebates

to urban costs are low — as seems empirically the case — undersized large cities are again

more likely to occur.
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