
Kinship Correlations and Intergenerational Mobility∗

M. Dolores Collado
Universidad de Alicante

Ignacio Ortuño-Ortin†

Universidad Carlos III

October 2016
Very preliminary draft

Abstract

We propose a new methodology to estimate long-run intergenerational socioeconomic mo-
bility. The specification is general enough to encompass the standard model as well as the
specification recently proposed by Gregory Clark. Our approach does not require to have in-
formation about the variable of interest for individuals in several generations and make use of
the correlations among individuals with different degrees of kinship in the same generation. In
our empirical application we use census data from a Spanish region and find a high degree of
persistence that corroborates some of Clark’s findings.

1 Introduction

The analysis of the degree of socioeconomic intergenerational mobility has attracted the attention
of many economists in recent years (see for example Chetty et al 2014). Part of the interest on
this topic is due, at least in the case of income mobility, to its possible relation with the increasing
income inequality experienced recently in some economies (Corak 2013). An additional factor to
explain this interest is the existence of recent studies showing that mobility in the long-run is
perhaps much lower than what most economists used to think (Long and Ferrie 2013, Clark 2014,
Lindahl et al 2014). This recent literature has started to change the standard view about mobility
across multiple generations, which used to assume that the correlation between grandparents and
grandchildren outcomes is basically the square of the parent-offspring correlation. Since for most
relevant outcomes such as income or education, parent-offspring correlations are always moderate,
economists had often assumed that the correlation between individuals in one generation and their
ancestors in different generations decreases really fast as we go back in time, so that after, say,
three or four generations the link is already very weak. However, recent empirical studies suggest a
much higher persistence rate in socioeconomic status and a significant link with grandparents and
even with great-grandparents (Lindahl et al 2014).

An important contribution in this area has been the work by Clark (2014) who claims that
mobility across several generations, for income as well as for other outcomes, is low due to the
existence of a latent variable, the "underlying social competence" of families, which is inherited
from parents and has a high persistence rate. If such latent variable indeed plays an important role
in the transmission of socioeconomic status the standard regressions of offspring outcomes against
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parent’s outcomes will be downward biased and the true persistence will be higher than suggested
by the regression coeffi cient. Clark (2014) asses the role of such latent variable using a methodology
based on the use of surnames. His approach requires information on the outcome of interest for
individuals in several generations. Using data from a series of countries and periods of time Clark
finds a very low degree of intergenerational mobility. Furthermore, the degree of mobility is very
similar across countries and time. Lindahl et al (2014) and Braun and Stuhler (2016) also find a
low degree of long-run intergenerational mobility but not as low as in Clark (2014).

The main problem with the approach adopted in these works is the data requirement, because
for many countries is diffi cult to obtain comparable information for more than two generations about
outcomes such as income or educational levels. For instance, for many countries, we typically find
that there is very little variation in years of formal education for older generations because the
majority of the population had just basic education. Here we propose a new approach to asses
the degree of long-run intergenerational mobility that does not require information on previous
generations. To apply our methodology we just need "horizontal" information, that is, information
about individuals of the same generation, or very close generations, who are relatives of a certain
degree, for example siblings, cousins, second cousins, parent-child, uncle-nephew. The idea behind
our method is quite simple. Say that we would like to asses the link between grandparents and
grandsons but we don’t have data for grandparents to directly measure it. But if instead we have
good data for cousins we can infer the grandparents-grandsons link from the cousins links. Thus,
horizontal information can overcome the lack of vertical information. In particular, we compute the
correlation for years of schooling for different degrees of kinship (brothers, fathers-sons, first-cousins
and uncles-nephews) using census data from a Spanish region. If we have enough of these moments
we can calibrate all the parameters of a reduced form model on intergenerational mobility. Our
results from this calibration exercise are very much consistent with the high persistence hypothesis
proposed by Clark. In particular we find that the persistence rate for the "underlying social
competence" of families is around 0.8. Consistent with this result, our approach predicts that the
educational levels of individuals in the current generation are still correlated in a non-negligible
magnitude with the socioeconomic status of their ancestors as much as four or five generations back
in time1.

Our approach is also related to the literature on siblings correlations (See Jäntti and Jenkins
2015 for a recent literature review). Most of the papers in this literature aim at estimating the
impact of family background on an observable outcome such as income, education, etc. The family
background is a latent component that accounts for all factors shared by siblings that are orthogonal
to the parental outcome. We extend these models by decomposing the family background into an
inheritable and a non-inheritable component. The idea is that by using correlations on outcomes
of relatives of different degrees of kinship we are able to disentangle the non-inheritable part of
family background that is only shared by sibling to the inheritable part that is also partially shared
by cousins, second cousins, etc., through their common ancestor. We also allow the inheritable
component to be correlated to the parental observable outcome. Our decomposition of the family
background into the inheritable and non-inheritable components is similar to the nature and nurture
decomposition. There are several papers that aim at estimating the relative importance of nature
and nurture by looking at the correlations in observed outcomes for different type of siblings like
MZ twins, DZ twins, siblings, half siblings, adoptees, etc (See Björklund and Salvanes 2011 for a

1Collado et al (2014) analyze long-run mobility in the same Spanish region using census data from the XIX and
the XX century. They find a higher level of mobility than the one in this paper. This discrepancy might be explained
because they only consider two socioeconomic levels whereas than here individuals are classified according to 10
possible levels of education (years of schooling)
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literature review).
Our approach requires data for a large sample of individuals and their relatives. However, in

some cases such information about relatives is not available. For that reason, we propose a second
approach that can partially overcomes such problem whenever the data contains the surnames of
individuals.2 Under this second approach we don’t need to identify relatives with certainty but
just in a probabilistic way. Thus, using the frequencies of surnames we are able to estimate the
probability that two individuals with the same surname are relatives of a certain degree (brothers,
cousins, and so on). In this way, we compute "expected moments" and provide an alternative
way to calibrate the model. Moreover, we use this second approach as a test to validate our first
approach.

Thus, we propose two new methods to asses the degree of long-run mobility that can be seen
as complementaries to the one used recently by several economists. Our first method requires in-
formation about relatives whereas the second method requires information about surnames. We
believe that our methods have an important advantage since they do not require information on
individuals in previous generations, and therefore, they can be applied to study long-run intergen-
erational mobility in many countries in which there is no comparable data on individuals in several
generations.

The results suggest that long-run intergenerational mobility might be quite low. Because we only
calibrate a reduced form model it’s diffi cult to get policy conclusions from our findings. However,
the fact that the latent variable underlying the social competence of families explains a high part
of the variance in levels of education suggests that public intervention policies should pay more
attention to the role of the family.

The paper proceeds as follows. Section 2 sets out the basic model and develops our first method.
Section 3 presents our main empirical findings. Section 4 provides our second method and additional
empirical findings. Section 5 contains an additional validation test of the first method. Section 6
extends the basic model to account for assortative mating and the potential influence of mothers.
Section 7 concludes. We include some additional information about the models in the Appendixes.

2 Theory

Suppose that y is the outcome of interest in our economy, for example income, education or wealth.
Since in our empirical exercise such outcome will be the level of education henceforth we identify
y with years of schooling but all our theoretical results are valid to study other outcomes as, for
example, income. We want to study the link of such variable y between individuals and their
ancestors. The model presented here considers only males, but it will be extended in Section 6 to
cover individuals of any gender. We consider a reduced form of Becker-Tomes (1979) model similar
to the one in Solon (2014)

yit = βyt−1 + z
i
t + xt + u

i
t (1)

where t − 1 denotes the father’s generation and t the children’s generation, yt−1 denotes years of
schooling of his father, zit denotes a latent variable that is inherited from the parents, xt is a shock
shared by all brothers in the family which is uncorrelated with the other variables (in particular
with zt), and uit is an individual’s white-noise error term. In principle the variable z

i
t might include

common genes and family values and depending on the whether there are perfect credit markets

2The way we use surnames here is completely unrelated to the way surnames are used in Clark (2014), Collado et
al (2014), Guell et al (2015), and Chetty et al (2014b), or the way names are used in Olivetti and Paserman (2015).
Here we only use surnames to establish the probability that two people bearing the same surname are relatives.
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or not father’s wealth could be also part of it. The variable xt could capture factors like the type
of neighborhood, common friends and perhaps the influence of one sibling on another. These are
factors that siblings might share but are not inherited from parents.

The latent variable zit is often omitted in this type of analysis and it has been introduced by
Clark (2014) who sees it as the "underlying social competence" of families and assumes that

zit = γzt−1 + e
i
t (2)

where zt−1 denotes the father’s value of such latent variable and eit is an individual white-noise
term.3 Thus, the "underlying social competence" is passed from fathers to their sons with persistence
rate γ.

The "standard approach" does not consider the existence of such variable z while Clark’s ap-
proach assumes that β = 0.4We take a more general view and a priory do not exclude any possibility
and let the data determine which model is the correct one. If the standard approach is the correct
one we should find that z is zero (or close to zero) whereas if Clark’s model is the correct one we
should find very low values of β and significant values of z and γ.

We suppose we are in the steady state and therefore the persistence parameters β and γ, the
distribution of zt−1 and yt−1 and all the covariances remain the same across generations. Under
the standard approach the parameter β is estimated by regressing child’s years of schooling on
parental years of schooling. Since z is unobservable, estimating γ in Clark’s model requires to
have observations not only on sons years of schooling and fathers years of schooling but also on
grandparents years of schooling (see Clark 2014). Unfortunately, in many cases it’s diffi cult to
get good data on the outcome of interest for a large sample of individuals from more than two
different generations. We propose a new methodology that only requires information on the years
of schooling of individuals in two generations, and sometimes only information from one generation.
The idea behind our method is quite simple: if the model specified by (1) and (2) is correct and we
have the necessary data, we can compute the correlations on years of schooling for different degrees
of kinship, for example the correlation for brothers, father-son, first-cousins, second-cousins, uncle-
nephew and so on. If we have enough of these moments we can calibrate all the parameters of the
model.5 To compute some of these moments we need information about individuals from the same
generation (brothers, first-cousins, second cousins,...) and if we have information about a previous
generation we might also compute correlations for father-sons and uncle-nephews. In some cases
one can have data on grandparents and compute the grandfather-grandson correlation.

Write as σ2y, σ
2
z and σ

2
x the variances of y, z and x. We can write the covariance in years of

schooling between brothers in generation t as

Covb(y
i
t, y

j
t ) = β2σ2y +

2βγσ2z
1− βγ + γ

2σ2z + σ
2
x

and the correlation as

ρb =
Covb(y

i
t, y

j
t )

σ2y
(3)

In Appendix A we show the corresponding correlations for father-son, grandfather-grandson, uncle-
nephew, first-cousins, second-cousins and third-cousins. If we know at least four of the previous
correlations we can calibrate the model to determine the values of those unknowns.

3We assume that siblings errors eit are uncorrelated. Our results are robust to imposing the restriction that siblings
get the same realization of et.

4Clark (2014) does not need to include x because he does not use data on brothers, cousins, etc.
5 If we have enough moments we can consider an even more general model in which the parameter β in the current

generation could be different from the one in the previous generation.
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We might not find an exact solution to such system of equations within the range of values
that we consider feasible in our economy. In that case we determine β, γ, σ2z and σ

2
x by solving the

following minimization problem

Min{β,γ,σ2z ,σ2x}∈F
∑
i∈C

pi(ρi − ρi)2 (4)

where ρi is the value of the observed correlation, pi is the sample size used to calculate correlation
ρi, F is the set of feasible values for the four unknowns, and C is the set of correlations for which
we have reliable data (for example brothers, cousins, second-cousins, fathers-son)..

3 Empirical Application I

In this section we apply the method proposed in section 2 to calibrate the model using census data
from the Spanish region of Cantabria.

3.1 The data

To apply our methodology we need data on extended families. The 2001 population census for
Spain, which is available nationwide, does not allow to identify families unless they are living in
the same house. However, for the region of Cantabria we have information on the full name of
each person and we can use this information to identify fathers and sons, brothers, uncles and
nephews, and cousins. The census contains information, among other variables, on the gender,
age and educational level of all individuals living in the region (526, 339 persons). We define the t-
generation as all males born in Cantabria between 1956 and 1976 (71, 479males and 68, 830 females)
and the (t− 1)-generation as their parents. Surnames in Spain are passed from parents to children
according to the following rule: A newborn person, regardless of gender, receives two surnames that
will keep for life. The first surname is the father’s first surname and the second the mother’s first
surname. This name convention allows us to identify fathers and mothers. For each person i in
generation t we define the set of potential parents as all the couples born before 1956 such that the
husband first surname coincides with person i first surname and the wife first surname coincides
with person i second surname. Then, we say that we identify the parents if there is only one couple
in the set of potential parents and the age difference between both parents and the son is at least
16 years. We identify the parents for 25, 860 males and 24, 610 females which is approximately
36.2% and 35.8% of the male and female population respectively. We use the information on the
educational level to assign years of schooling to each person following Calero et.al.6 We measure
the years of schooling as deviations from the corresponding mean in each generation.

The matched sample almost 2 years younger than the unmatched one. The reason is that the
older a person is the more likely the parents are not living together or one of them has died. Since
the matched sample is younger it is also more educated (0.8 more years of schooling than the
unmatched sample)

6We assign 2 years of education to those who did not complete primary education, 5 years to primary education,
8 to compulsory education, 10 to vocational training, 12 to secondary education, 15 to sort university degrees, 17 to
long university degrees other than engineering and medicine, 18 for engineers and medical doctors and 19 for Ph.D.
All our results are robust to other reasonable ways to assign years of education as, for example, assigning 0 years of
education to those who did not complete primary education, 4 years to primary education, 9 to vocational training
and 11 to secondary education.
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Table 1
Men Women

Matched Unmatched Matched Unmatched

Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

Age 33.61 5.91 35.42 6.16 33.70 5.92 35.50 6.15

Years of schooling 10.53 3.71 9.71 3.64 10.99 3.71 10.11 3.69

Number of observations 25,860 45,619 24,610 44,220

Once we have identified parents and children, siblings are immediately identified. Finally, we
identify siblings in the parents generation when there are only two individuals in that generation
sharing the same two surnames. Once siblings in the parents generation are identified, uncles
and nephews, and cousins are immediately identified. The strategy to identify siblings in the
parents’generation is quite conservative in the sense that it is unlikely that we identify as brothers
individuals who actually are not brothers, but we pay the price of having smaller sample sizes for
cousins and uncles-nephews than for fathers-sons or brothers.

3.2 The benchmark case

We use the sample of males and the correlations between brothers, cousins (fathers are brothers),
fathers and sons, and nephews and uncles (brothers of the fathers). The empirical covariances are
first computed for each family and then averaged across families as suggested in Solon, Page and
Duncan (2000). The empirical correlations are obtained by dividing the empirical covariances by
the product of the standard deviations.7 The empirical correlations and the number of families and
pairs used to compute those correlations are presented in Table 2.

Table 2
Brothers Father-son Cousins Uncle-nephew

Correlations 0.467 0.379 0.196 0.232
Number of families 6,022 17,663 746 1,921
Number of pairs 11,109 25,860 1,654 2,843

These correlations are within the values estimated in some other developed countries (see Hertz
2007 and Bjorklund and Salvanes 2011). We solve the minimization problem (4) with the four
moments to obtain8

Table 3
β γ σ2z σ2x
0 0.790 6.586 2.303

We next compare the empirical correlations with the predicted correlations for these values of

7Notice that the standard deviation of y is 3.705 for the current generation and 3.831 for the parents generations.
Therefore, the empirical correlations for fathers and sons, and uncles and nephews would have been slightly larger if
we would have divided the covariances by the variance of y

8We use Mathematica to solve all the minimization problems in this paper. The codes and the details of all the
computations are available upon request.
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β, γ, σ2z and σ
2
x

Table 4
Correlations Brothers Father-son Cousins Uncle-nephew
Observed 0.467 0.379 0.196 0.232
Predicted 0.467 0.374 0.187 0.236
% Error 0% -0.025% -4.784% 1.859%

Since we don’t have data on the correlation for other relatives, as grandfather-grandson, we
cannot compare it with the correlation predicted by the model. However, we can compare the
square of the father-son correlation with the grandfather-grandson correlation predicted by the
model

Predicted grandfather-son (father-son)2

0.299 0.144

This result is in accordance with Clark’s view and with some recent empirical evidence (Lindahl
et al 2015). The grandfather-grandson correlation is much stronger than the squared of the father-
son correlation.

It’s useful to asses how much of the total variance of yt is explained by the different components
of the model.

σ2y = β2σ2y + σ
2
z + 2βCov(yt−1, zt) + σ

2
x + σ

2
u

= β2σ2y + σ
2
z + 2

βγσ2z
1− βγ + σ

2
x + σ

2
u

The part of the variance σ2y explained directly by the father’s years of schooling is β
2σ2y. The part

directly explained by the latent variable z is σ2z while the part explained by the shocks shared
by brothers is σ2x. We standardize years of schooling so that σ

2
y = 1 and obtain the following

decomposition

Table 5
Total explained β2σ2yt−1 σ2z σ2x 2βCov(yt−1, zt)

0.648 0 0.480 0.168 0

Thus, the results in our benchmark case favour Clark’s view that long-run mobility is much
lower than suggested by most economists, and that a large share of the persistence is explained by
an inherited latent variable with a high rate of persistence (γ = 0.79).

It’s important to mention that both x and z are essential to obtain a satisfactory calibration of
the model. Thus, if we drop x from the model and repeat our previous procedure we again obtain
a very high value of the persistence parameter γ. However, in this case the (over-identified) model
performs quite poorly at predicting the correlations. This is not surprising since previous works
have already shown the importance of this type of shock to understand the correlations between
brothers (Bjorklund and Salvanes 2011). If we now drop z, we obtain a non negligible β = 0.384
but the fit regarding cousins and uncle-nephew correlations is very poor. The predictions based on
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these two models are presented in Table 6

Table 6
Correlations Brothers Father-son Cousins Uncle-nephew
Observed 0.467 0.379 0.196 0.232
Dropping x
Predicted 0.367 0.397 0.313 0.339
% Error -21.47% 4.691% 59.82% 46.09%
Dropping z
Predicted 0.475 0.384 0.070 0.182
% Error 1.794% 1,190% -64.33% -21.42%

To better appreciate the consequences of these findings, Figure 1 shows the predicted correla-
tions for individuals at the current generation and their ancestors, i.e. their fathers, grandfathers,
great-grandfathers, etc., based on the full model and on the model without z.

Figure 1

As it is very clear from the figure, the persistence based on the model without z is low, so
that after a few generations the influence of ancestors vanishes almost completely. Our approach,
however, provides a more pessimistic view about intergenerational mobility in the long run. Thus,
we find that, under the assumption of stability of the parameters of the model, the correlation
between the levels of y of individuals in the current generation and the levels of y of their ancestors
seven generations back in time is still as high as 9%.

3.3 Robustness checks

One possible concern with our previous analysis is about the robustness of our findings to changes
in the values of the observed empirical correlations. For this reason we repeat our procedure for
1,000 different sets of values of the four correlations ρb, ρfs, ρun, ρc1. These values are obtained by
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carrying out 1,000 random draws from our original sample, each draw selecting 75% of the original
individuals in the current generation.9 Table 7 reports the mean values of the four unknowns
obtained under this procedure and compares it with the ones reported in the above benchmark
case.

Table 7
β γ σ2z σ2x

Mean value 0.065 0.840 5.136 2.500
Benchmark case 0 0.790 6.586 2.303

Table 8 shows the mean correlations predicted by the model and the observed ones

Table 8
Mean correlations Brothers Father-son Cousins Uncle-nephew
Predicted 0.460 0.377 0.215 0.257
Observed 0.471 0.383 0.207 0.246

Figure 2 shows for these 1,000 subsamples the values of β and γ and the standardized σ2z, σ
2
x

as well as β2σ2y (the part of the variance of yt directly explained by yt−1).
10 The different cases are

ordered according to the obtained values of β.

Figure 2

The basic facts that arise from this robustness check exercise are: i) The persistence parameter
is always quite high and in almost all the cases greater than 0.75;11 ii) The largest values of β are

9Since the number of pairs of uncle-nephew is not that large we consider that draws of 75% of the whole sample
are better than draws of 50%. The results for the 50% case, which are in the vast majority of cases very similar to
the ones reported here, are available upon request.
10Notice that we have normalized σ2z and σ

2
x to σ

2
y.

11Only 18% of the estimated γ are smaller 0.79, the value found for the benchmark case.
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around 0.2, but even for those cases the part of the total variance of yt explained directly by yt−1
is small and in all the simulations but one, smaller than the part of the variance explained by the
latent variable z.

Thus, the main findings and conclusions obtained in the benchmark case are robust to these
changes in the values of the observed correlations.12

4 A second approach

In many cases the data does not contain explicit information about the different degrees of kinship
of the individuals. In our previous empirical application we could determine kinship for a large
sample of individuals thanks to the fact that in that census each individual has two surnames.
In many countries, however, names contain just one surname so that we can’t use surnames to
identify relatives. In this section we propose a methodology to overcome such lack of information
for cases in which the data contains the surname of each individual. We first need to estimate the
probability that two randomly chosen individuals from the same generation who bear the same
surname are brothers, first-cousins, second-cousins and so on. Such probabilities will depend on
the total number of individuals bearing such surname and the population growth (in the parent’s
generation). Once we have established those probabilities we can follow an approach similar to the
previous one but using expectations of moments.

Let’s define the "size" of a surname, in a given generation, as the total number of individuals
in that generation bearing such surname. Appendix C explains how to compute rk(g, n), the
probability that, given a population growth rate of g, two individuals bearing the same surname
of size n are relatives of degree k = 1, 2, 3, ..,where k = 1 indicates that they are brothers, k = 2
denotes first-cousins, k = 3 denotes second-cousins, and so on. These probabilities are calculated
under the assumption that all individuals with the same surname share a common ancestor (in the
paternal line) with such surname. This might seem as a strong assumption since in many real cases
two individuals bearing the same surname, even in the same geographical area, are not related (an
example of this could be the Welsh surname Jones). However, most of those surnames are often of
a very large "size" and the relevant probabilities are very low in any case. Thus, our analysis will
be more accurate when there are enough surnames that are not too large in size.

Once we have those probabilities rk(g, n) for surname sizes n = 2, 3, .., S, our second method-
ology works as follows. Assume that the size of the surname and the variable y are independent
random variables. Take all individuals in the current generation with a given surname of size n.
Let (y1, y2, ...., yn) be their vector of individual years of schooling. We consider for each individual
i his value yi as a random variable with variance σ2y (the variance in the whole population in that
generation). Consider all n2 pairs of individuals that can be formed from those n individuals (with
repetitions). Among those n2 pairs we have n pairs with degree of kinship k = 0, i.e. pairs formed
by the same individual. We write the share of such pairs as P0(n) = n

n2
= 1

n . Say that the proba-
bility that two randomly chosen different individuals are brothers is given by r1(g, n). Then, the
share of pairs who are brothers is P1(g, n) = (1− P0(n))r1(g, n). In general we have that the share
of pairs with degree of kinship k > 0 is

Pk(g, n) = (1− P0(n))rk(g, n)
12We have carried out additional robustness checks. In particular we first have repeated the same robustness check

as the one here but for draws of 50% of the original sample, and second we have solved our minimization problem for
other 256 economies obtained by considering values of the correlations within a ±10% deviation from the benchmark
case values. The results are again similar and are provided upon request.
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It’s true that for random variables y1, y2, ...., yn

V ar(
n∑
i=1

yi) =
∑
i,j

Cov(yi, yj) (5)

We write the covariance for two individuals with degree of kinship k as Covk(yi, yj), s ≥ 1, and
in the right-hand term of (5) the share of such pairs is Pk(g, n). Thus, we have

V ar(

∑n
i=1 y

i

n
) = P0(n)σ

2
y +

∞∑
k=1

Pk(g, n)Covk(y
i, yj) (6)

Equation (6) is the main one under this approach. Notice that in most countries one can
estimate the parameters Pk(g, n) and σ2y from available data about population growth and the
distribution of y, respectively.

The left-hand term in (6) can also be estimated if we have individual information for a large
enough number of different surnames of size n. Thus, suppose that we have information for all
individuals with surnames from the set Sn = {s1n, s2n, ..., sNnn } all of them of size n. Say that the
observed mean years of schooling for individuals with surname sin is y

sin and the observed mean
value among all individuals with surnames from the set Sn is yn. We then use the sample variance
to estimate the population variance and

V ar(

∑n
i=1 y

i

n
) =

1

Nn − 1

Nn∑
i=1

(ys
i
n − yn)2 (7)

Since β ≤ 1 and γ ≤ 1 the term Covk(y
i, yj) in (6) becomes small fast. For that reason in

the empirical application we only consider degrees of kinship up to k = 6, i.e. up to fifth degree
cousins. Thus, using (7) and a maximum degree of kinship of k = 6, instead of (6) we consider the
following equations

1

Nn − 1

Nn∑
i=1

(ys
i
n − yn)2 = P0(n)σ

2
y +

6∑
k=1

Pk(g, n)Covk(y
i, yj), n = 2, 3, ...S (8)

where S is the maximum surname size considered. In our empirical exercise we take S = 15. Notice
that for large values of the surname size n the expected covariance P0(n)σ2y+

∑4
k=1 Pk(g, n)Covk(y

i, yj)
should approach to zero.

The rest of the method is similar to the one in the first approach. If we have really good data
about a large number of surnames of size up to S ≥ 4 we solve for β, γ, σ2z and σ2x from the set of
equations in (8). In some cases the solution is not in the feasible set F and we then solve for

Min{β,γ,σ2z ,σ2x}∈F

S∑
n=2

Nn

(∑Nn
i=1(y

sin − yn)2
Nn − 1

− P0(n)σ2y −
4∑

k=1

Pk(g, n)Covk(y
i, yj)

)2
(9)

In many cases one can also obtain very accurate information about some moments, in particular
about the correlations ρb, ρfs. In that case we might want to impose in the minimization program
(9) the additional constraints ρb = ρb, and ρfs = ρfs.
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4.1 Empirical Application II

In this section we apply our second method to calibrate again our model using census data from
the Spanish region of Cantabria. In this case, however, we don’t restrict our sample to the set of
relatives that can be identified thanks to the fact that all individuals bear two surnames. Here we
take all the 25-45 years old male individuals born in the region of Cantabria (71,515 individuals).
For each individual we consider only his first surname. We obtain the following frequencies of
surnames sizes from size 2 up to size 15.

Table 9
Size 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Frequency 800 508 312 240 171 123 94 87 66 75 52 42 37 26

Appendix C shows how we compute the probabilities rk(g, n) . In the benchmark case of this
section we assume a population growth rate of g = 1.15 . To compute those probabilities we also
assume that the number of male descendants of any individual follows a Poisson. We check that the
predictions of our demographic model are very close to the data provided by the Spanish Statistical
Institute. As an example, Table 10 shows, for surnames of size two and for surnames of size 10,
the probability that two randomly chosen individuals bearing the same surname are relatives of
different degrees

Table 10
Brothers Cousins Second-cousins Third-cousins Forth-cousins

n = 2 0.772 0.151 0.045 0.016 0.007
n = 10 0.136 0.175 0.194 0.163 0.116

Probabilities rk(g, n); g = 1.15

We compute for each of the different surname sizes the sample variance
∑Nn
i=1(y

sin−yn)2
Nn−1 . We next

solve the minimization problem (9) with the additional constraints that the correlations for brothers
and for father-son have to be equal to the observed correlations, i.e. ρb = ρb, and ρfs = ρfs, where
those empirical correlations are the same as in the previous section (ρb = 0.459, and ρfs = 0.374).
Table 11 shows the result under this alternative approach and compares it with the one obtained
in the benchmark case of the previous approach

Table 11
β γ σ2z σ2x

Alternative approach 0 0.800 0.468 0.158
Previous approach (benchmark case) 0.099 0.850 0.301 0.174

The two calibration approaches produce reasonably similar results. The second approach gives
even more weight to the latent variable z. Since this approach depends also on the way we construct
the probabilities rk(g, n), we have carried out some robustness checks on the way we model the
demography. The results are quite similar and are available upon request.

It’s interesting to see that for these values of β, γ, σ2z and σ
2
x, the grandfather-grandson correla-

tion predicted by the model is 0.3, even higher than the predicted with the values obtained under
the first approach. The correlations predicted for cousins and uncle-nephew are 0.192 and 0.24,
very close to the empirical ones obtained in the first exercise, 0.197 and 0.262 respectively.13

13Notice that the set of families used in the first exercise is a subset of the sample used in this second case, so that
in principle the correlations could be different.
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In Figure 2 we put together the observed values of the variances
∑Nn
i=1(y

sin−yn)2
Nn−1 and the predicted

values under this second method. The figure also shows the predicted values if we assume that
σ2z = 0.

F igure 3

Thus, we believe that this second approach provides a useful methodology for cases in which
we don’t know the degree of kinship of individuals but do know their surnames.

5 Additional Verifications

Here we carry out an additional validation test of our first method proposed in section 2. We check
how well our method predicts the expected covariances used in the second approach presented
in section 4. Thus, we can use the values obtained in our benchmark case in section 2, β =
0.099, γ = 0.850, σ2z = 0.2301 and σ2x = 0.174, to compute the expected covariances P0(n)σ2y +∑4

k=1 Pk(g, n)Covk(y
i, yj) in (8), and compare them with the empirical values 1

Nn−1
∑Nn

i=1(y
sin −

yn)2.
Figure 4 shows the result of this prediction exercise. In general the predictions are quite close

to the observed data. Recall that the empirical values are obtained from a sample of individuals
different from the one used in the calibration of the model, and that is why we can see this exercise
as a validation test. Notice also that for surname sizes greater than 7 the empirical values seem
to be more noisy, this is perhaps due to the fact that, as Table 8 shows, the sample sizes in those
cases are relatively low. The figure also shows the prediction if we assume that σ2z = σ2x = 0 and β
is given by the correlation fathers-sons.
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Figure 4

6 A model with assortative mating

The model we were considering did not take into account the potential influence of the mother
in the outcome of the children. We now extend the previous model to incorporates mothers and
assortative mating. We assume that the value of the output y for an individual from generation t
is given by

ykt = βkỹt−1 + z
k
t + x

k
t + u

k
t

where the superscript k stands for males (k = m) and for females (k = f). We assume that

ỹt−1 =
ymt−1 + y

f
t−1

2

and the socioeconomic status of the child, zkt , depends on the father z
m
t−1 as well as on the mother

zft−1

zkt = γkz̃t−1 + e
k
t

z̃t−1 =
zmt−1 + z

f
t−1

2

Regarding the shocks, we assume that xkt is shared by all siblings of the same gender, can be corre-
lated across siblings of different gender and is uncorrelated with the other variables (in particular
with zt and yt−1). Finally ukt is an individual’s white-noise error term.

We assume there is assortative mating both in years of schooling and in socioeconomic status.
In particular we consider the following matching functions:

zft−1 = rzmt−1 + ωt−1

yft−1 = τymt−1 + εt−1

where ωt−1 and εt−1 might be correlated but are uncorrelated to zmt−1 and y
m
t−1. Thus, r measures

the degree of assortative mating on the socioeconomic status (z), and τ the degree of assortative
mating in years of schooling.

This model has 12 unknown parameters: βm, γm, σ2zm , σ
2
xm , β

f , γf , σ2
zf
, σ2

xf
, σxmxf , r, τ

and σwε, and therefore we need at least 12 correlations between relatives of different kinship to
calibrate these parameters. The inclusion of females into the model allows us to use the following 20
correlations: husband and wife, brothers, sisters, brother-sister, three types of male cousins (fathers
are brothers, mothers are sisters, and father and mother are brother an sister) and analogously three
of female cousins, four types of male-female cousins (fathers are brothers, mothers are sisters, father
of the male is brother of the mother of the female, and mother of the male is sister of the father of the
female), son-father, daughter-father, two types of nephew-uncle (brother of the father and brother of
the mother) and analogously two of nice-uncle.14 Notice that we have not included the correlations
between individuals in generation t and their female relatives in the previous generation. The
reason is that the education level of women in generation t− 1 is not comparable to the education
14The formulas for these correlations as functions of the parameters are presented in Appendix B.
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level of the current generation. Very few women born before 1956 went to university or even to high
school, and the standard deviation of their years of schooling is much lower than for the current
generation.15

6.1 Empirical Application III

We calibrate the parameters βm, γm, σ2zm , σ
2
xm , β

f , γf , σ2
zf
, σ2

xf
, σxmxf , r, τ and σwε by solving

the following minimization problem

Min{βm,γm,σ2zm ,σ
2
xm ,β

f ,γf ,σ2
zf
,σ2
xf
,σ
xmxf

,r,τ ,σwε}∈F
∑
i∈C

pi(ρi − ρi)2

where ρi are the theoretical correlations, ρi the empirical correlations, pi the number of families
used to calculate each correlation, F is the set of feasible values for the unknown parameters,
and C is the set of correlations for which we have reliable data (husband-wife, brothers, sisters,
brother-sister, etc.).

The calibrated parameters are presented in Table 12

Table 12
βm γm σ2zm σ2xm
0.028 0.801 6.084 2.378
βf γf σ2

zf
σ2
xf

0.000 0.809 5.800 2.129
σxmxf r τ σwε
1.732 0.976 0.541 0.000

The picture we obtain is again consistent with Clark’s results. Both βm and βf are very close to
zero, whereas γm and γf are around 0.8. This means that the observable outcome is transferred
from parents to children indirectly through the latent variable z, which is very persistent. Another
remarkable result is the large degree of assortative mating in z.

Regarding the fitting, we have computed the predicted correlations based on this parameters
and we compare them with the empirical correlations. The results are presented in Table 13. The
fit is reasonable taking into account that we try to match 18 moments using 12 parameters. As
we expected, the empirical correlations based on many pairs of observations, which are likely to be
quite accurate, are very close to the predicted ones, whereas those based on a smaller number of
pairs are less close. This result is not only due to the weights used, a similar fit arises when we use
equal weights (ES ESTO CIERTO?).

15The standard deviation of year of schooling for women is 3.004 in the parents generation and 3.711 in the current
generation.
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Table 13
N. pairs Empirical Predicted Error (%)

husband-wife 21170 0.540 0.540 0.000%

brothers 11109 0.467 0.467 -0.006%

sisters 10316 0.437 0.437 0.000%

brother-sister 21017 0.414 0.414 -0.010%

male cousins

(fathers are brothers) 1654 0.196 0.184 -6.064%

(mothers are sisters) 1539 0.213 0.197 -7.690%

(father and mother are brother and sister) 2586 0.209 0.190 -8.972%

female cousins

(fathers are brothers) 1428 0.170 0.177 3.987%

(mothers are sisters) 1322 0.193 0.189 -1.906%

(father and mother are brother and sister) 2200 0.207 0.183 -11.622%

male-female cousins

(fathers are brothers) 2919 0.186 0.180 -3.026%

(mothers are sisters) 2624 0.168 0.193 14.823%

(father-male is brother of mother-female) 2332 0.208 0.187 -10.259%

(mother-male is sister of father-female) 2425 0.150 0.186 24.269%

son-father 25860 0.379 0.379 -0.116%

daughter-father 24610 0.360 0.360 0.005%

nephew-uncle (brother of the father) 4640 0.232 0.236 1.754%

nephew-uncle (brother of the mother) 3457 0.228 0.243 6.515%

nice-uncle (brother of the father) 4467 0.216 0.228 5.467%

nice-uncle (brother of the mother) 3273 0.247 0.236 -4.554%

We now decompose the variance of y into its different components as

σ2yk = (β
k)2σ2ỹ + σ

2
zk + β

kCov(ỹkt−1, z
k
t ) + σ

2
xk + σ

2
uk

The results of these decompositions for males and females are presented in Table 14.16 We can see
that the model explains 62.5% of variance in years of schooling for males and 57.5% for females,
with z and x accounting respectively for around 70% and 30% of the explained variance.

Table 14
Total explained β2σ2ỹt σ2z σ2x 2βCov(ỹt−1, zt)

Males 0.625 0.0005 0.444 0.173 0.0075
Females 0.575 0.0000 0.420 0.155 0.0000

Finally we compute the long-run mobility predicted by our model. Since we account for the
influence of both parents, long-run mobility is not uniquely defined. We are going to use the
paternal line and compute the predicted correlations for males in the current generation with their
ancestors through the paternal line (i.e. the father, the father of the father, etc.). In Figure ? we
compare those predicted correlations with the corresponding predictions based on a simple model
without z (INCLUIR EL GRÁFICO).

16We standardize the different components to σ2ym for males and to σ2yf for females.
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7 Conclusions

We have proposed a method to asses the degree of intergenerational mobility which takes into
account the possibility that a substantial part of the persistence in socioeconomic status might
be due to the existence of a latent variable that is inherited from parents. The method is based
on the correlations between a series of relatives and does not demand much information about
individuals in previous generations. Our findings suggest that indeed such latent variable plays a
very important role and is the reason why persistence in socioeconomic status is much stronger than
what is commonly thought. Thus, our results are in line with Clark (2014) claims about the low
degree of social mobility in the long run. However, our exercise doesn’t provide any new information
in favor or against the possibility that the degree of intergenerational mobility is constant across
different economies and time.

We have applied our method to asses the degree of intergenerational mobility in a Spanish region
and have focused exclusively on the paternal line. The extension to other regions and countries and
the inclusion of both genders and assortative mating are important tasks which are left for future
research.
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Appendix A
Consider a reduced form of Becker-Tomes (1979) model similar to the one in Solon (2014)

yit = βyt−1 + z
i
t + xt + u

i
t

where t− 1 denotes the father’s generation and t the children’s generation, yt−1 is father’s years of
schooling, yit is child i’s years of schooling, z

i
t is the child i’s status, xt is not inherited, is uncorrelated

with yt−1 and zit but is shared among brothers, and u
i
t is a random error that is uncorrelated with

yt−1 and zit.
Status is partially inherited so that

zit = γzt−1 + e
i
t

where eit that is not correlated across brothers. Notice that when β = 0 we are in Clark’s model.
We assume that the second order moments of all variables are time invariant. We present below

the formulas for the covariances in years of scholing for relatives of different degrees of kinship. The
correlations are computed by dividing the covariances by the variance of y.
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Covariances
Brothers
We first compute the covariances between yt−1 and zt−1

Cov(yit, z
i
t) = Cov(βyt−1 + z

i
t, z

i
t) = βCov(yt−1, z

i
t) + σ

2
z

= βCov(yt−1, γzt−1) + σ
2
z = βγCov(yt−1, zt−1) + σ

2
z

and in the steady state we have Cov(yt, zt) = Cov(yt−1, zt−1), so that

Cov(yt−1, zt−1) =
σ2z

1− βγ

and the covariance between brothers is

Covb(y
i
t, y

j
t ) = β2σ2y + 2βγCov(yt−1, zt−1) + γ

2σ2z + σ
2
x

Cousins
We first compute the following covariances for their fathers (who are brothers)

Covb(z
i
t−1, z

j
t−1) = γ2σ2z

and
Covb(y

i
t−1, z

j
t−1) = βγCov(yt−2, zt−2) + γ

2σ2z

The covariance for male cousins whose fathers are brothers is

Covc(y
i
t, y

j
t ) = β2Covb(y

i
t−1, y

j
t−1) + 2βγCovb(y

i
t−1, z

j
t−1) + γ

2Covb(z
m,i
t−1, z

m,j
t−1)

Son-Father

Covsf (y
i
t, yt−1) = βσ2y + γCov(yt−1, zt−1)

Nephew and uncle (brother of the father)

Covneph−u(y
i
t, y

j
t−1) = βCovb(y

i
t−1, y

j
t−1) + γCovb(y

i
t−1, z

j
t−1)

Second cousins
We first compute the following covariances for their fathers (who are cousins)

Covc(z
i
t−1, z

j
t−1) = γ2Covb(z

i
t−2, z

j
t−2)

and
Covc(y

i
t−1, z

j
t−1) = βγCovb(yt−2, zt−2) + γ

2Covb(z
i
t−2, z

j
t−2)

The covariance for second cousins whose fathers are brothers is

Covc2(y
i
t, y

j
t ) = β2Covc(y

i
t−1, y

j
t−1) + 2βγCovc(y

i
t−1, z

j
t−1) + γ

2Covc(z
i
t−1, z

j
t−1)

Third cousins
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We first compute the following covariances for their fathers (who are second cousins)

Covc2(z
i
t−1, z

j
t−1) = γ2Covc(z

i
t−2, z

j
t−2)

and
Covc2(y

i
t−1, z

j
t−1) = βγCovc(yt−2, zt−2) + γ

2Covc(z
i
t−2, z

j
t−2)

The covariance for second cousins whose fathers are brothers is

Covc3(y
i
t, y

j
t ) = β2Covc2(y

i
t−1, y

j
t−1) + 2βγCovc2(y

i
t−1, z

j
t−1) + γ

2Covc2(z
i
t−1, z

j
t−1)

Appendix B
We now extend the previous model to incorporates mothers and assortative mating. We assume

that the value of the output y for an individual i from generation t is given by

ykt = βkỹkt−1 + z
k
t + x

k
t + u

k
t (10)

where the superscript k = m stands for males and k = f for females, and we assume that

ỹkt−1 = αkyy
m
t−1 + (1− αky)y

f
t−1

and the "underlying social competence" of the child, zkt , depends on the father z
m
t−1 as well as on

the mother zft−1
zkt = γkz̃kt−1 + e

k
t

z̃kt−1 = αkzz
m
t−1 + (1− αkz)z

f
t−1

(11)

Regarding the shocks, we assume that xkt is shared by all siblings of the same gender, can
be correlated across siblings of different gender and is uncorrelated with the other variables (in
particular with zt). Finally ukt is an individual’s white-noise error term.

We assume there is assortative mating both in years of schooling and in social competence. In
particular we consider the linear projections of zft−1 and y

f
t−1 on z

m
t−1 and y

m
t−1 respectively:

zft−1 = rmzmt−1 + ω
m
t−1

yft−1 = τmymt−1 + ε
m
t−1

where ωmt−1 and ε
m
t−1 might be correlated but are uncorrelated to z

m
t−1 and y

m
t−1.

We use these matching functions to write years of schooling, ykt , and social status, z
k
t , as a

function of father’s years of schooling, ymt−1, and social status z
m
t−1. We write (11) as

zkt = Gkmz
m
t−1 + g

k
mω

m
t−1 + e

k
t

where

Gkm = γk(αkz + (1− αkz)rm)
gkm = γm(1− αkz)

and (10) as
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ykt = Bk
my

m
t−1 + b

k
mε

m
t−1 +G

k
mz

m
t−1 + g

k
mω

m
t−1 + e

k
t + x

k
t + u

k
t

where

Bk
m = βk

(
αky + (1− αky)τm

)
bkm = βk(1− αky)

All these expressions will be used to compute correlations between relatives that are related
through their fathers. However, when we consider relatives that are related through their mothers,
we need to consider ykt−1, as a function of mother’s years of schooling, y

f
t−1, and social status z

f
t−1.

We then also consider the linear projections

zmt−1 = rfzft−1 + ω
f
t−1

ymt−1 = τ fyft−1 + ε
f
t−1

where ωft−1 and ε
f
t−1 might be correlated but are uncorrelated to z

m
t−1 and y

m
t−1, and

rf = rm
σ2zmt−1
σ2
zft−1

τ f = τm
σ2ymt−1
σ2
yft−1

We can then write (11) as

zkt = Gkfz
f
t−1 + g

k
fω

f
t−1 + e

k
t

where

Gkf = γk(αkzr
f + (1− αkz))

gkf = γkαkz

and (10) as

ykt = Bk
fy

f
t−1 + b

k
fε
f
t−1 +G

k
fz
f
t−1 + g

k
fω

f
t−1 + e

k
t + x

k
t + u

k
t

where

Bk
f = βk

(
αkyτ

f + (1− αky)
)

bkf = βkαky

We assume that the second order moments of all variables are time invariant. We present below
the formulas for the covariances in years of scholing for relatives of different degrees of kinship.
The correlations are computed by dividing the covariances by σ2m, σ

2
f or σmσf depending on the

gender.
Covariances
Husband and wife
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Covh−w(y
m
t−1, y

f
t−1) = Covhw(y

m
t−1, τ

mymt−1 + ε
m
t−1) = τmσ2ym

Brothers
We first compute the covariances between ykt−1 and z

k
t−1 and z

j
t , k, j = m, f ,

Cov(ymt , z
m
t ) = Bm

mG
m
mCov(y

m
t−1, z

m
t−1) + b

m
mg

m
mCov(εt−1, ωt−1) + σ

2
zm

and in the steady state we have Cov(ymt , z
m
t ) = Cov(ymt−1, z

m
t−1), so that

Cov(ymt−1, z
m
t−1) =

bmmg
m
mCov(εt−1, ωt−1) + σ

2
zm

1−Bm
mG

m
m

and the covariance between brothers is

Covb(y
m,i
t , ym,jt ) = (Bm

m)
2 σ2ym + 2B

m
mG

mCov(ymt−1, z
m
t−1) + (b

m
m)

2 σ2εm

+(Gmm)
2 σ2zm + (g

m
m)

2 σ2wm + 2b
m
mg

m
mCov(ε

m
t−1, ω

m
t−1) + σ

2
xm

Sisters

Covs(y
f,i
t , yf,jt ) =

(
Bf
m

)2
σ2ym + 2B

f
mG

fCov(ymt−1, z
m
t−1) +

(
bfm

)2
σ2εm

+
(
Gfm

)2
σ2zm +

(
gfm

)2
σ2wm + 2b

f
mg

f
mCov(ε

m
t−1, ω

m
t−1) + σ

2
xf

Brother-sister

Covb−s(y
m,i
t , yf,jt ) = Bm

mB
f
mσ

2
ym +B

m
mG

f
mCov(y

m
t−1, z

m
t−1) +B

f
mG

m
mCov(y

m
t−1, z

m
t−1) + b

m
mb

f
mσ

2
εm

+GmmG
f
mσ

2
zm + g

m
mg

f
mσ

2
wm +

(
bfmg

m
m + b

m
mg

f
m

)
Cov(εmt−1, ω

m
t−1) + σxm,xf

Male cousins (fathers are brothers)
We first compute the following covariances for their fathers (who are brothers)

Covb(z
m,i
t−1, z

m,j
t−1) = (G

m
m)

2σ2zm + (g
m
m)

2σ2wm

and

Covb(y
m,i
t−1, z

m,j
t−1) = Bm

mG
m
mCov(y

m
t−2, z

m
t−2) + b

m
mg

m
mCov(ε

m
t−2, w

m
t−2)

+(Gmm)
2σ2zm + (g

m
m)

2σ2wm

The covariance for male cousins whose fathers are brothers is

Covmc_fb(y
m,i
t , ym,jt ) = (Bm

m)
2Covb(y

m,i
t−1, y

m,j
t−1) + 2B

m
mG

m
mCovb(y

m,i
t−1, z

m,j
t−1)

+(Gmm)
2Covb(z

m,i
t−1, z

m,j
t−1)

Male cousins (mothers are sisters)
We first compute the following covariances for their mothers (who are sisters)

Covs(z
f,i
t−1, z

f,j
t−1) = (G

f
m)

2σ2zm + (g
f
m)

2σ2wm
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and

Covs(y
f,i
t−1, z

f,j
t−1) = Bf

mG
f
mCov(y

m
t−2, z

m
t−2) + b

f
mg

f
mCov(ε

m
t−2, w

m
t−2)

+(Gfm)
2σ2zm + (g

f
m)

2σ2wm

The covariance for male cousins whose mothers are sisters is

Covmc_ms(y
m,i
t , ym,jt ) =

(
Bm
f

)2
Covs(y

f,i
t−1, y

f,j
t−1) + 2B

m
f G

m
f Covs(y

f,i
t−1, z

f,j
t−1)

+
(
Gmf
)2
Covs(z

f,i
t−1, z

f,j
t−1)

Male cousins (father and mother are brother and sister)
We first compute the following covariances for their father and mother (who are brother and

sister)
Covb−s(z

m,i
t−1, z

f,j
t−1) = GmmG

f
mσ

2
zm + g

m
mg

f
mσ

2
wm

and

Covb−s(y
m,i
t−1, z

f,j
t−1) = Bm

mG
f
mCov(y

m
t−2, z

m
t−2) + b

m
mg

f
mCov(ε

m
t−2, w

m
t−2)

+GmmG
f
mσ

2
zm + g

m
mg

f
mσ

2
wm

Covb−s(y
f,i
t−1, z

m,j
t−1) = Bf

mG
m
mCov(y

m
t−2, z

m
t−2) + b

f
mg

m
mCov(ε

m
t−2, w

m
t−2)

+GmmG
f
mσ

2
zm + g

m
mg

f
mσ

2
wm

The covariance for male cousins whose father and mother are brother and sister is

Covmc_fb−ms(y
m,i
t , ym,jt ) = Bm

mB
m
f Covb−s(y

m,i
t−1, y

f,j
t−1) +B

m
mG

m
f Covb−s(y

m,i
t−1, z

f,j
t−1)

+Bm
f G

m
mCovb−s(y

f,i
t−1, z

m,j
t−1) +G

m
mG

m
f Covb−s(z

m,i
t−1, z

f,j
t−1)

Female cousins (fathers are brothers)

Covfc_fb(y
f,i
t , yf,jt ) = (Bf

m)
2Covb(y

m,i
t−1, y

m,j
t−1) + 2B

f
mG

f
mCovb(y

m,i
t−1, z

m,j
t−1)

+(Gfm)
2Covb(z

m,i
t−1, z

m,j
t−1)

Female cousins (mothers are sisters)

Covmc_ms(y
f,i
t , yf,jt ) =

(
Bf
f

)2
Covs(y

f,i
t−1, y

f,j
t−1) + 2B

f
fG

f
fCovs(y

f,i
t−1, z

f,j
t−1)

+
(
Gff

)2
Covs(z

f,i
t−1, z

f,j
t−1)

Female cousins (father and mother are brother and sister)

Covmc_fb−ms(y
f,i
t , yf,jt ) = Bf

mB
f
fCovb−s(y

m,i
t−1, y

f,j
t−1) +B

f
mG

f
fCovb−s(y

m,i
t−1, z

f,j
t−1)

+Bf
fG

f
mCovb−s(y

f,i
t−1, z

m,j
t−1) +G

f
mG

f
fCovb−s(z

m,i
t−1, z

f,j
t−1)

Male-female cousins (fathers are brothers)
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Covm−fc_fb(y
m,i
t , yf,jt ) = Bm

mB
f
mCovb(y

m,i
t−1, y

m,j
t−1) +

(
Bm
mG

f
m +B

f
mG

m
m

)
Covb(y

m,i
t−1, z

m,j
t−1)

+GmmG
f
mCovb(z

m,i
t−1, z

m,j
t−1)

Male-female cousins (mothers are sisters)

Covm−fc_ms(y
m,i
t , yf,jt ) = Bm

f B
f
fCovs(y

f,i
t−1, y

f,j
t−1) +

(
Bm
f G

f
f +B

f
fG

m
f

)
Covs(y

f,i
t−1, z

f,j
t−1)

+Gmf G
f
fCovs(z

f,i
t−1, z

f,j
t−1)

Male-female cousins (father of the male is brother of the mother of the female)

Covm−fc_fb−ms(y
m,i
t , yf,jt ) = Bm

mB
f
fCovb−s(y

m,i
t−1, y

f,j
t−1) +B

m
mG

f
fCovb−s(y

m,i
t−1, z

f,j
t−1)

+Bf
fG

m
mCovb−s(y

f,i
t−1, z

m,j
t−1) +G

m
mG

f
fCovb−s(z

m,i
t−1, z

f,j
t−1)

Male-female cousins (mother of the male is sister of the father of the female)

Covm−fc_ms−fb(y
m,i
t , yf,jt ) = Bm

f B
f
mCovb−s(y

m,i
t−1, y

f,j
t−1) +B

f
mG

m
f Covb−s(y

m,i
t−1, z

f,j
t−1)

+Bm
f G

f
mCovb−s(y

f,i
t−1, z

m,j
t−1) +G

m
f G

f
mCovb−s(z

m,i
t−1, z

f,j
t−1)

Son-Father

Covsf (y
m
t , y

m
t−1) = Bm

mσ
2
ym +G

m
mCov(y

m
t−1, z

m
t−1)

Son-Mother

Covsm(y
m
t , y

f
t−1) = Cov(Bm

my
m
t−1 + b

m
mε

m
t−1 +G

m
mz

m
t−1 + g

m
mω

m
t−1, τ

mymt−1 + ε
m
t−1)

= τmBm
mσ

2
ym + τ

mGmmCov(y
m
t−1, z

m
t−1) + b

m
mσ

2
εm + g

m
mCov(ω

m
t−1, ε

m
t−1)

Daughter-Father

Covdf (y
f
t , y

m
t−1) = Bf

mσ
2
ym +G

f
mCov(y

m
t−1, z

m
t−1)

Daughter-Mother

Covdm(y
f
t , y

f
t−1) = Cov(Bf

my
m
t−1 + b

f
mε

m
t−1 +G

f
mz

m
t−1 + g

f
mω

m
t−1, τ

mymt−1 + ε
m
t−1)

= τmBf
mσ

2
ym + τ

mGfmCov(y
m
t−1, z

m
t−1) + b

f
mσ

2
εm + g

f
mCov(ω

m
t−1, ε

m
t−1)

Nephew and uncle (brother of the father)

Covneph−u_bf (y
m,i
t , ym,jt−1) = Bm

mCovb(y
m,i
t−1, y

m,j
t−1) +G

m
mCovb(y

m,i
t−1, z

m,j
t−1)

Nephew and uncle (brother of the mother)
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Covneph−u_bm(y
m,i
t , ym,jt−1) = Bm

f Covb−s(y
f,i
t−1, y

m,j
t−1) +G

m
f Covb−s(y

m,i
t−1, z

f,j
t−1)

Nephew and aunt (sister of the father)

Covneph−au_sf (y
m,i
t , yf,jt−1) = Bm

mCovb−s(y
m,i
t−1, y

f,j
t−1) +G

m
mCovb−s(y

f,i
t−1, z

m,j
t−1)

Nephew and aunt (sister of the mother)

Covneph−au_sm(y
m,i
t , yf,jt−1) = Bm

f Covs(y
f,i
t−1, y

f,j
t−1) +G

m
f Covs(y

f,i
t−1, z

f,j
t−1)

Nice and uncle (brother of the father)

Covnice−u_bf (y
f,i
t , ym,jt−1) = Bf

mCovb(y
m,i
t−1, y

m,j
t−1) +G

f
mCovb(y

m,i
t−1, z

m,j
t−1)

Nice and uncle (brother of the mother)

Covnice−u_bm(y
f,i
t , ym,jt−1) = Bf

fCovb−s(y
f,i
t−1, y

m,j
t−1) +G

f
fCovb−s(y

m,i
t−1, z

f,j
t−1)

Nice and aunt (sister of the father)

Covnice−au_sf (y
f,i
t , yf,jt−1) = Bf

mCovb−s(y
m,i
t−1, y

f,j
t−1) +G

f
mCovb−s(y

f,i
t−1, z

m,j
t−1)

Nice and aunt (sister of the mother)

Covnice−au_sm(y
f,i
t , yf,jt−1) = Bf

fCovs(y
f,i
t−1, y

f,j
t−1) +G

f
fCovb−s(y

f,i
t−1, z

f,j
t−1)

Variance decomposition
We have that

ykt = βkỹkt−1 + z
k
t + x

k
t + u

k
t

Then
σ2yk = (β

k)2σ2ỹk + σ
2
zk + β

kCov(ỹkt−1, z
k
t ) + σ

2
xk + σ

2
uk

• σ2
uk
is obtained as a residual.

• βk, σ2
xk
and σ2

zk
are directly estimated.

• σ2
ỹk

σ2
ỹkt−1

=
(
αky

)2
σ2ym +

(
1− αky

)2
σ2yf + α

k
y(1− αky)τmσ2ym

and we use the estimates of αky and τ
m, and the empirical values for σ2ym and σ

2
yf

• Cov(ỹkt−1, zkt )

Cov(ỹkt−1, z
k
t ) = Gkm

[
αky + (1− αky)τm

]
Cov(ymt−1, z

m
t−1) + g

k
m(1− αky)Cov(εmt−1, wmt−1)

and we use the estimates of αky , G
k
m, g

k
m, Cov(ε

m
t , w

m
t ) and Cov(y

m
t , z

m
t ).
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Appendix C
Let ps be the probability that a surname picked up at random is of size s in a given generation17

and let pns(g) be the probability that a surname of size s in a given generation becomes of size n
in the next generation, where g denotes the population growth rate.18 Using Bayes rule we can
compute the probability qsn(g) that a surname of size n in generation t was of size s in generation
t− 1.

qsn(g) =
pns(g)ps
∞∑
j=1

pnj(g)pj

Then, using this conditional probabilities, we can compute the probability that two persons
with the same surname in generation t are brothers, first-cousins, second-cousins, etc., depending
on the surname size n and the population growth rate of g. Let r1(g, n) be the probability of
being brothers, r2(g, n) the probability of being first-cousins,.., rk(g, n) the probability of being
(k + 1)th-cousins, etc. We have the following recursive formulas:

r1(g, n) =

∞∑
s=1

qsn(g)
1

s

r2(g, n) =
∞∑
s=2

qsn(g)r1(g, s)

...

rk(g, n) =

∞∑
s=2

qsn(g)rk−1(g, s)

...

17We assume that for all generations the distribution of surname sizes follow a p-law distribution. In our case we
estimate the power parameter is 1.6
18 In the empirical part of the paper we assume that for all generations the number of male descendants follow a

Poisson distribution with population growth rate g.
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