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Single Period Markowitz Portfolio Selection,  
Performance Gauging and Duality: 

A Variation on Luenberger’s Shortage Function 
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Abstract: 

Markowitz portfolio theory (1952) has induced research into the efficiency of portfolio 

management. This paper studies existing nonparametric efficiency measurement approaches 

for single period portfolio selection from a theoretical perspective and generalises currently 

used efficiency measures into the full mean-variance space. Therefore, we introduce the 

efficiency improvement possibility function (a variation on the shortage function), study its 

axiomatic properties in the context of Markowitz efficient frontier, and establish a link to the 

indirect mean-variance utility function. This framework allows distinguishing between 

portfolio efficiency and allocative efficiency. Furthermore, it permits retrieving information 

about the revealed risk aversion of investors. The efficiency improvement possibility function 

thus provides a more general framework for gauging the efficiency of portfolio management 

using nonparametric frontier envelopment methods based on quadratic optimisation. 
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1. Introduction 

Markowitz portfolio theory (1952), based on the idea of a trade-off between portfolio risk (as 

measured by its variance) and portfolio expected return, is generally considered as a 

cornerstone of modern portfolio theory. This approach is essentially based on the efficient 

frontier concept, defined as the Pareto-optimal subset of portfolios, i.e., a set of portfolios 

such that their expected returns may not increase unless their variances increase. 

In addition to its strong maintained assumptions on probability distributions and on 

Von Neumann-Morgenstern utility functions, the main problem with Markowitz model at the 

time was its computational cost.1 Though Farrar (1962) was seemingly the first to empirically 

test the full-covariance Markowitz model, computing costs motivated Sharpe (1963) to 

formulate a simplification known as the “diagonal model”. Later, Sharpe (1964) and Lintner 

(1965) introduced a capital asset pricing model (CAPM), an equilibrium model assuming that 

all agents have similar expectations about the market. Under these circumstances, it is not 

necessary to compute the efficient frontier.2 Tools for gauging the efficiency of portfolios, 

such as the Sharpe (1966) and Treynor (1965) ratios and the Jensen (1968) alpha, have mainly 

been developed with reference to the above developments (in particular CAPM).3  

Despite these developments, the static Markowitz model remains the more general 

framework. Our contribution focuses on integrating an efficiency measure in this single 

period Markowitz model and to develop a dual framework for assessing the degree of 

satisfaction of investors’ preferences, starting from –seemingly forgotten- ideas in 

Farrar (1962). This leads to decomposing portfolio performance into allocative and portfolio 

efficiency components. In addition, duality allows revealing information about investors’ risk 

aversion. This is an issue of great practical significance that, to the best of our knowledge, is 

novel. 

There are both theoretical and practical motivations guiding these developments. 

Theoretically, this contribution brings portfolio theory in line with developments in mainly 

 
1 A problem largely alleviated by today’s computing power. 
2 Surveys on the history of these developments are, e.g., Constantinides and Malliaris (1995) and Philippatos 
(1979). 
3 General surveys on tools for measuring the performance of managed portfolios are Grinblatt and Titman 
(1995) or Shukla and Trzcinka (1992). 
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production theory, where distance functions have proven useful tools to derive efficiency 

measures and to develop dual relations with economic (e.g., profit) support functions 

(Chambers, Chung and Färe (1998)). From a practical viewpoint, one can list the following 

advantages. First, the integration of efficiency measures into portfolio theory responds to the 

needs for rating tools. Second, instead of tracing the whole efficient portfolio frontier using a 

critical line search method, each asset or fund is projected onto the relevant part of the 

frontier according to a meaningful efficiency measure. This may lead to computational gains, 

depending on the number of assets or funds to evaluate and the aimed fineness of the portfolio 

frontier representation. Third, the possibility of measuring portfolio performance using a dual 

approach not only allows to gauge assets or funds using given information about risk 

aversion, but it also allows to reveal the (shadow) risk aversion minimising portfolio 

inefficiency. Therefore, our contribution enriches the empirical toolbox of practitioners. 

In particular, we introduce a variation of the shortage function, a distance function 

introduced in production theory by Luenberger (1995) that is dual to the profit function. This 

function accomplishes four goals: (i) it gauges the performance of portfolios by measuring a 

distance between a portfolio and an optimal portfolio projection on the Markowitz efficient 

frontier; (ii) it leads to a nonparametric estimation of this efficient frontier; (iii) it judges 

simultaneously mean return expansions and risk contractions –in fact, performance can be 

gauged in any direction- and thereby generalises existing approaches; and (iv) it provides a 

new, dual interpretation of our portfolio efficiency distance. Given the investment context, 

our efficiency measure is called the Efficiency Improvement Possibility (EIP) function. 

To develop the fourth point somewhat, the paper establishes a link between the EIP 

function and mean-variance utility functions, thereby offering an integrated framework for 

assessing portfolio efficiency from the dual standpoint. To each efficient portfolio 

corresponds a particular utility function, whose optimal value is the indirect utility function. 

This approach provides a dual interpretation of the EIP function through the structure of risk 

preferences. Technically, this result is easily derived from Luenberger (1992, 1996). Along 

this line, we also establish a link to some kind of “Slutsky matrix”, defined as a matrix of 
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derivatives with respect to risk aversion (based on the structure of the mean-variance utility 

function). 

To situate our contribution more precisely, it is possible to distinguish between several 

approaches to test for portfolio efficiency. It is common to develop statistical tests based on 

certain parametric distributional assumptions (e.g., Jobson and Korkie (1989), Gouriéroux 

and Jouneau (1999), Philippatos (1979a)). However, right from the start (Markowitz (1952)) 

there has also been attention to simple nonparametric approaches to test for portfolio 

efficiency. Our contribution is situated within the latter tradition. 

Our work can best be contrasted with Varian (1983) and some later developments in 

the nonparametric test tradition using economic restrictions (Matzkin (1994)). Varian (1983) 

developed nonparametric nonstatistical tests checking whether the observed investment 

behaviour is consistent with the expected utility and the mean variance models. However, his 

formulation only allows to infer whether certain data are either consistent or not with the 

tested hypothesis. This regularity test lacks an indication about the degree of goodness of fit 

between data and models. In this respect, it is similar to the early nonparametric test literature 

in production (Diewert and Parkan (1983)) and consumption (Varian (1982)). 

Sengupta (1989) is probably the first to link the Varian (1983) portfolio test approach 

to the nonparametric efficiency literature by explicitly introducing an efficiency measure. 

Färe and Grosskopf (1995) establish a link between the above literature on regularity tests in 

general and the growing number of efficiency contributions employing distance functions (or 

their inverses, efficiency measures) as an explicit (nonstatistical) indicator of goodness of fit. 

Recently, Morey and Morey (1999) presented a nonparametric, quadratic programming 

approach to measure investment fund performance focusing on radial potentials for either risk 

contraction or mean return expansion. By contrast, our approach gauges portfolio 

performance simultaneously in terms of risk contraction and mean return augmentation. 

Among the obvious advantages of a nonparametric approach to production, 

consumption and investment one can mention: (i) it avoids the necessity to postulate specific 

functional forms, (ii) it is related to “revealed preference” conditions of some sort that are 

finite in nature and that are directly tested on any finite amount of observations, (iii) it leads 
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to the determination of inner and outer approximations of choice sets that contain the true but 

unknown frontier of the set, (iv) these approximations are based on (most often piecewise 

linear) functions that are directly spanned by the observations in the sample at hand, (v) the 

computational cost is rather low (frequently limited to solving mathematical programming 

problems), etc. (see, e.g., Matzkin (1994), Morey and Morey (1999), Varian (1983)).  

Aside from the investment setting, the problem of estimating monotone concave 

boundaries has recently been extensively studied and widely applied in production. Following 

the seminal article of Farell (1957), nonparametric efficiency methods estimate an inner 

bound approximation of the true, unknown production frontier using piecewise linear 

envelopments of the data, instead of traditional parametric, econometric estimation methods 

that suffer from the risk of specification error.4 Our contribution can then be interpreted as an 

envelopment method for estimating an inner bound of the true but unknown Markowitz 

efficient frontier. While most nonparametric efficiency methods in production rely on linear 

programming, the portfolio context requires quadratic optimisation.5 

The paper is organised as follows. Section 2 lays down the groundwork for our 

analysis. Section 3 introduces the EIP function and studies its axiomatic properties. Section 4 

studies the link between the EIP function and the direct and indirect mean-variance utility 

functions. Section 5 presents mathematical programs to compute the EIP. A simple empirical 

illustration using a small sample of 26 investment funds is provided in Section 6. Conclusions 

and possible extensions are formulated in a final section. 

 

2. Efficient Frontier and Portfolio Management 

In developing our basic definitions, we consider n financial assets. Assets are characterised by 

an expected return ( )iRE  for i = 1...n, and, since returns of assets are correlated, by a 

covariance matrix ( )ji RRCov ,ji, =Ω  for { }nji ,...,1, ∈ . A portfolio x is composed by a 

 
4 Briec and Lesourd (2000) study mutual fund performance employing stochastic parametric frontiers. This 
study extends their work in an effort to avoid specification errors. 
5 Nonparametric efficiency methods in production are known in operations research as Data Envelopment 
Analysis models. By analogy, our method could therefore be termed “Portfolio Envelopment Analysis” (PEA). 
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proportion of each of these n financial assets. Thus, one can define  with 
. The condition  is imposed whenever short sales are excluded.  

( )nxxx ,...,1=

∅≠ℑ

1
...1

=∑
= ni

ix 0≥ix





ℑ x=

=ℵ V

ℵ

ℵℜ =

xR ;2 ∃+

Decision-makers often face additional economic constraints (see, e.g., Pogue (1970) or 

Rudd and Rosenberg (1979)). For instance, the proportion of each of the n financial assets 

composing a portfolio can be modified by taking into account transaction costs or by 

imposing upper limits on any fraction invested. If these constraints are linear functions of the 

asset weights, then the set of admissible portfolios is defined as: 





≥≤=∈ ∑
=

0,,1;
...1

xbAxxR
ni

i
n     (1) 

where A is a (  matrix and . We assume throughout the paper that  )nm× mRb∈
The return of portfolio x is: ( ) i

ni
iRxxR ∑

=

=
...1

. One can therefore calculate its expected 

return and its variance as follows: 
( )( ) ( )∑

=

=
ni

ii RExxRE
...1

     (2) 

( )( ) ( )∑=
ji

jiji RRCovxxxRV
,

,      (3) 

It is useful to define the mean-variance representation of the set ℑ  of portfolios. From 

Markowitz (1952), it is straightforward to give the following definition: 

( )( ) ( )( )( ){ }ℑ∈xxRExR ;,      (4) 

However, such a representation cannot be used for quadratic programming, because the 

subset  is not convex (see, for instance, Luenberger (1998)). Thus, we extend the above set 

by defining a mean-variance (portfolio) representation set through: 

( )( ){ 2
+++ ∩−×+ RRR       (5) }

This set can be rewritten as follows: 

( ) ( ) ( )( ) ( )( )( ){ }xRExRVEVEV ,',',',' −≤−ℑ∈∈ℜ =    (6) 

The addition of the cone is necessary for the definition of a sort of “free disposal hull” of the 

mean variance representation of feasible portfolios. Clearly, the above definition is 

compatible with the definition in Markowitz (1952). To measure the degree of portfolio 

efficiency, it is necessary to isolate a subset of this representation set, generally known as the 

efficient frontier. This subset is defined as follows: 

 

5 



 

Definition 2.1. In the mean-variance space, the weakly efficient frontier is defined as: 

( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ) ( ) ( ){ }ℜ∉′′⇒′′−<−∧ℑ∈=ℑ EVEVxRExRVxxRExRVM ,,,;,∂  

 

From the above definition the weakly efficient frontier is the set of all the mean-variance 

points that are not strictly dominated in the two dimensional space. It is also possible to 

define a strongly efficient frontier, but the above formulation simplifies most results in this 

contribution. Moreover, the geometric representation of the frontier (see Figure 1) is quite 

similar except for some rather special cases.  

<FIGURE 1 ABOUT HERE> 

The above definition enables us to define the set of weakly efficient portfolios: 

 

Definition 2.2. The set of the weakly efficient portfolios is defined, in the simplex, as: 

( ) ( )( ) ( )( )( ) ( ){ }ℑ∈ℑ∈=ℑΛ MM xRExRVx ∂,; . 

 

Markowitz (1959) defines an optimisation program to determine the portfolio 

corresponding to a given degree of risk aversion. This portfolio maximises a mean-variance 

utility function defined by: 

( )( ) ( )( ) ( )( )xRVxRExU ρµµρ −=,      (7) 

where µ ≥ 0 and ρ ≥ 0. This utility function satisfies positive marginal utility of expected 

return and negative marginal utility of risk. The quadratic optimisation program may simply 

be written as follows: 

( )( ) ( )( ) ( )( )

01
1

≥=

≤

−=

∑
=

x,x
bAxt.s

xRVxRExUmax

n...i
i

, ρµµρ

   (8) 

Traditionally, the ratio [ ]+∞∈= ,0µρϕ represents the degree of absolute risk aversion.  

 Setting 1and0 == ρµ  eliminates the return information from this quadratic 

mathematical program and yields the efficient portfolio with minimum risk. Denoting this 

global minimum variance portfolio x~ , it can be represented in two-dimensional 

mean-variance space (see Figure 1) as ( ) ( )( ) ( )( )( )xRExRVV R ~,~~,~ = .  
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When shorting is allowed or there is a riskless asset with zero variance and non-zero 

positive return, then (from the two-fund and the one-fund theorems) the efficient frontier is 

determined by simple analytical solutions (e.g., Elton, Gruber and Padberg (1979) or 

Luenberger (1998)). Though the computational burden of the more general quadratic 

programming approach remains substantial, when building realistic portfolio models it is hard 

to avoid. The approach developed in the next section adheres to this quadratic programming 

tradition to maintain generality. To extend the well-known Markowitz approach, we introduce 

in the next section the EIP function of a portfolio as an indicator of its performance. This EIP 

function is similar to the shortage function (see Luenberger (1995)). 

 

3. Efficiency Improvement Possibility Function and the Frontier of 

Efficient Portfolios 

Intuitively stated, the shortage function in production theory measures the distance between 

some point of the production set and the Pareto frontier. Before we introduce this function 

formally, it is of interest to focus on the basic properties of the subset  on which the 

shortage function is defined below: 

ℜ

 

Proposition 3.1. The subset ℜ  satisfies the following properties: 

1)  is a convex set. ℜ

2)  is a closed set. ℜ

3) ( ) ( ) ( ) ( ) ( ) ℜ∈⇒−≤−≥−ℜ∈∀ ',',',',0',', EVEVEVandEVEV ,  

Proof. 1) We have immediately from equation (6), 

( ) ( ) ( )( ) ( )( )( ){ }xRExRVEVxREV ,',',;',' 2 −≤−ℑ∈∃∈ℜ += . Assume that ( ) ( ) ℜ∈2211 ,,, EVEV . 

Thus, we can deduce that there exists  such that ℑ∈21,xx ( ) ( )( ) ( )( )( )11 , xRExR11, VEV −≤−  and 

( ) ( )( ) ( )( )( ) ℜ∈−≤− 22
22 ,, xRExRVEV . Let us show that ( ) ( )( ) ,,1 22, 11 ℜ∈−+ EVEV θθ  

[ ]1,0∈∀θ . Since ( )( ).R

( )
V  is a convex function, we immediately get the inequality 

( )( )( ) ( ) ( )( )( ) ( )( )( )2xθ−121
21 111 xRVxRVxRVVV θθθθθ +≥−+≥−+

( ) ( )

. Moreover, we have 

( )( )21
21 11 xxREEE θθθθ −+≤−+





x. Thus, since is a 




≥=∑
=

0,1
...1

i
n

i xx≤∈ ,;
i

n bAxR
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convex set, there exists ( ) ℑ∈−+= 21 1 xxx θθ  such that ( )( ) ( )( )( ) ≥− xRExRV ,  

( ) ( )( )2211 ,1, EVEV −−+− θθ . From expression (6), this implies 

( ) ( )( ) ℜ∈−−+− 2211 ,1, EVEV θθ  and 1) is proven. 2) The functions ( )( ) ( )( ).and. RERV  are 

continuous with respect to x, thus ℵ  is a closed set. Using the result in Briec and Lesourd 

(1999), we get that { ( ))}+−( ×++ℵ R

)
R

( ) ( )
 is closed, and obviously 2) holds. 3) From equation 

(6), ( ( ) ℜ∈⇒ ',', EVEV−≤−ℵ∈∀ ',', EVEV ,  and we straightforwardly deduce 3).     

Q.E.D. 

( ) ( )( ) ( )(({ }=xDMRE xRExRV θθ ,;sup

( ) ( )( )({= ExRV ,;infxDRC λλ

( ) ) ( )( ) ){ }ℜ∈+= EgxREg xS δδ ,sup

( )EV ggg ,−=

 

 

From the above properties of the representation set, we are now able to define the 

notion of an efficiency measure in the specific context of Markowitz portfolio theory. Before 

introducing our own approach based on the shortage function, we first briefly review existing 

efficiency measures in a context of portfolio benchmarking. 

The first measure introduced by Morey and Morey (1999) computes the maximum 

expansion of the mean return while the risk is fixed at its current level.6 From our definition 

of the representation set, this mean return expansion function is defined by: 

)) ℜ∈     (9) 

In a similar vein, the same authors define a risk contraction function as follows: 

( )( )) }ℜ∈xR     (10) 

This function measures the maximum proportionate reduction of risk while fixing the mean 

return level. These authors apply these functions to measure investment fund performance.  

Now, we introduce the shortage function (Luenberger (1995)) and study its properties 

in the context of Markowitz portfolio theory. It is shown below (see Proposition 3.2) that it 

encompasses the functions (9) and (10) as special cases. To achieve this objective, we 

introduce the efficiency improvement possibility (EIP) function defined as follows: 

 
Definition 3.1. The function defined as: ( )(( − VgxRV δ;  is 

the efficiency improvement possibility (EIP) function for the portfolio x in the direction of 

vector . 

6 This seems also the approach taken by Sengupta (1989). 
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The principle of the EIP function is illustrated in Figure 2. The efficiency 

improvement possibility function looks for improvements in the direction of both an increased 

mean return and a reduced risk. For instance, the inefficient portfolio A is projected onto the 

efficient frontier at point B. Notice that the EIP is very similar to the directional distance 

function, another name for the shortage function introduced in production analysis by 

Chambers, Chung and Färe (1998). The directional distance function looks for simultaneous 
changes in the direction of reducing inputs (x) and expanding outputs (y) (i.e., ( )yx ggg ,−= ). 

<FIGURE 2 ABOUT HERE> 

The pertinence of this portfolio management efficiency indicator results from some of 

its elementary properties, as summarised in the following proposition. 

 
Proposition 3.2. Let  be the EIP function defined on gS ℑ .  has the following properties: gS

1) ( ) +∞<⇒ℑ∈ xSx g  

2) If (  then ) 0, >EV gg , ( ) ( )ℑ∂∈⇔= M
g xxS 0  (weak efficiency) 

3) ( )( ) ( )( )( ) ( )( ) ( )( )( ) ( ) ( )ySxSxRExRVyREyRVyx gg ≤⇒≤ℑ∈∀ ,,, --,  (weak 

monotonicity on ℵ ) 

4)  is continuous on ℑ.  gS

5) If g  and , then ( )( xRVV −= ) 0=Rg ( ) ( )xSxD gRC −= 1 . 

6) If (  and , then ) 0, >EV gg ( )( xREg R = ) ( ) ( )xSxD gMRE += 1 . 

Proof. 1) From the definition of the representation set, if ℑ∈x  then the subset 

( ) ( ) ( ) ( )( ) ( )( )({ xRExRVEVEVxC )}−≤−ℜ∈= ,',';','

( ) +∞<xS g

 is bounded. It follows trivially that 

. 2) Assume that ( )ℑΛ∉ Mx

( )

. In such a case, there exists some  such 

that 

( ) ℜ∈',' EV

( )( ) ( )( )( )xRExRVEV ,-','- ≥

( ) 0>xS g

. But, from Definition 2.1 it follows immediately that 

. Consequently, we deduce that ( ) ( )ℑΛ∈⇒ Mx=g xS 0

( )( ) ( ) ( )
. To prove the converse, let 

( ) ( )( )EgVg gxSxREgxSxRV +− , . Assume that ( ) 0>xS g . Since , we get ( ) 0, >EgVg

( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )xRE,xRVgxSxREgxSxRV EgVg , −>++−

( )ℑΛ∉ Mx

( ) ( ){

. We deduce immediately that 

, and 2) holds. 3) follows from Luenberger (1995). 4) Let the function T  

defined by 

+→ Rℜ:

}ℜ∈+−= EV gE,gV;supE,VT δδδ . Since ℜ  is convex and satisfies the free 
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disposal rule, it is easy to show the continuity of T. Moreover, since mean and variance are 

continuous functions with respect to x, 4) holds. 5) and 6) result from making some obvious 

changes (see, e.g., Chambers, Chung and Färe (1998)).  Q.E.D. 

 

Briefly commenting on these properties, the use of the EIP function only guarantees weak 

efficiency. It does not exclude projections on vertical parts of the frontier allowing for an 

additional expansion in terms of expected return. Furthermore, portfolios with weakly 

dominated risk and return characteristics are only classified as weakly less efficient. Finally, 

the last two parts clearly establish a link with the Morey and Morey (1999) single dimension 

efficiency measurement orientations in (9) and (10). Implementing some obvious changes, a 

simple proof for these links is straightforwardly derived from, for instance, Chambers, Chung 

and Färe (1998). The next section studies the EIP function from a duality standpoint.  

 

4. Duality, Shadow Risk Aversion and Mean-Variance Utility 

Already Markowitz (1959) envisioned portfolio selection as a two step procedure, whereby 

the reconstruction of the efficient set of portfolios in a first step is subsequently followed by 

picking the optimal portfolio for a given preference structure. To provide a dual interpretation 

of the EIP function, we must first define the indirect mean-variance utility function (see, e.g., 

Farrar (1962) or Philippatos (1979a)). 

 

Definition 4.1. For given parameters (ρ,µ), the function defined as: 
( ) ( )( ) ( )( )

01
1

≥=

≤
−=

∑
=

x,x
bAx.t.s

xRVxREsup,*U

n...i
i

ρµρµ
 

is called the indirect mean-variance utility function. 

 

Therefore, the maximum value function for the decision maker is straightforwardly 

determined for a given set of parameters (ρ,µ) representing his risk-aversion. Knowledge of 

these parameters allows selecting a unique efficient portfolio among those on the weakly 
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efficient frontier maximising the decision maker’s direct mean-variance utility function. 

Furthermore, Farrar (1962) suggested to trace the set of efficient portfolios by solving this 

dual problem for different sets of parameters (ρ,µ). 

Note that more elaborate dual frameworks exist in the literature. For instance, Varian 

(1983) describes nonparametric test procedures verifying whether a suitable mean-variance 

utility function rationalises observed portfolio choices and asset prices. Our contribution 

adheres to the before mentioned tradition and does not depend on asset price information. 

To apprehend duality in our framework, it is useful to distinguish between overall, 

allocative and portfolio efficiency when evaluating the scope for improvements in portfolio 

management. The following definition clearly distinguishes between these concepts. 

 
Definition 4.2. Let be the EIP function defined on gS ℑ . We call: 

1) Overall Efficiency (OE) index, the quantity: 

( ) ( )( )( ) ( )( )( ) ({ })µρδρδµδµρ ,*UgxRVgxRE;sup,OE VE ≤−−+=  

2) Allocative Efficiency(AE) index, the quantity: 
( ) ( ) ( )xS,OE,,xAE g−= µρµρ  

3) Portfolio Efficiency (PE) index, the quantity: 
( ) ( )xSxPE g=  

 

This definition immediately implies: 

( )
( ) ( ) ( )

EV

,

gg
xU,*U

,OE
µρ

µρ
µρ µρ

+

−
=     (11) 

Thus, OE is simply the ratio between (i) the difference between (maximum) indirect 

mean-variance utility (Definition 4.1) and the value of the direct mean-variance utility 

function for the observation evaluated and (ii) the normalised value of the direction vector 

 for given parameters (ρ,µ). ( EV ggg ,−= )

Expanding on the decomposition introduced in Definition 4.2, Portfolio Efficiency 

only guarantees reaching a point on the portfolio frontier, not necessarily a point on the 

frontier maximising the investor’s indirect mean-variance utility function. In this sense, it is 

similar to the notion of technical efficiency in production theory. Allocative Efficiency, by 
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contrast, measures the needed portfolio reallocation, along the portfolio frontier, to achieve 

the maximum of the indirect mean-variance utility function. This requires adjusting an 

eventual Portfolio Efficient portfolio in function of relative prices, i.e., the parameters of the 

mean-variance utility function. Overall Efficiency ensures that both these ideals are achieved 

simultaneously. Obviously, the following additive decomposition identity holds: 

( ) ( ) ( )xPExAEOE += µρµρ ,,,     (12) 

Notice that changes in the risk-aversion parameters (ρ,µ) alter the slope of the indirect 

utility function. While the amount of PE is invariant to these changes, the relative importance 

of AE and OE normally changes. 

In Figure 2, this decomp d for a portfolio denoted by point A. For 

simplicity, assume that 

osition is illustrate
( ) 1=−= EV g,gg , where . , is the usual Euclidean metric. In 

terms of this figure, it is easy to see that AC −=OE , while AB −=PE  and 

BC −=AE . 

The indirect mean-variance utility function turns out to be a useful tool to characterise 

the representation set ℜ . In particular, by using duality one can state the following property.  

 

Proposition 4.1. The representation set ℜ  admits the following dual characterisation: 

( ) ( ){ } 22= +∩≤−∈ℜ R,*UVE;RE,V µρρµ  
Proof. By definition, ( )( ){ 2

+++ ∩−×+ℵ=ℜ RRR

( )( )( )
} . However, if ( ) , then 2, +∉ Rµρ

( )( ) ( )( ) ( )( ){ } +∞=−×+ℵ∈ ++ RRxRE,xRV;xUsup ,µρ

( )

. Since for any variance-mean 

vector we have ( )( )++ −×+ℵ RR∈E,V , we deduce that ( ),* VEU ρµµρ −≥ . Now, 

assume that ( ) ℜ∉E,V . From Proposition 3.1, ℜ is convex. From the separation theorem, 

there exists ( )  such that 2
+∈ R,µρ ( )µρρµ ,*UVE >− . Consequently, U ( ) E,* Vρµµρ −≥  

implies ( )  and Proposition 4.1 follows.  Q.E.D. ℜ∈E,V

 

This proposition allows establishing a link between the shortage function and the indirect 

utility function in the next proposition. In particular, the duality result in Proposition 4.2 

shows that the EIP function can be derived from the indirect mean-variance utility function, 
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and conversely. It is inspired by Luenberger (1995), who established duality between the 

expenditure function and the shortage function.  

 
Proposition 4.2. Let  be the EIP function defined on gS ℑ .  has the following properties: gS

1) 

 

( ) ( ) ( )( ) }0,0,1;,*{inf , ≥≥=+−= ρµρµµρ µρ VEg ggxUUxS

 U2) ( ) ( )( ) };)({sup,* , ℑ∈−= xxSxU gµρµρ  

 
Proof. The proof is a straightforward consequence of Luenberger (1995).  Q.E.D. 

 

This result proves that the EIP function can be computed over the dual of the mean-variance 

space. The support function of the representation set is the indirect utility function U*. 

We are now interested in studying the properties of the EIP function that presume 

differentiability at the point where the function is evaluated. Therefore, we introduce the 

adjusted risk aversion function: 
( ) ( ) ( ) ( )( ){ }0,0,1;,*minarg, , ≥≥=+−= ρµρµµρµρ µρ VE ggxUUx  (13) 

that implicitly characterises the agent’s risk aversion. It could also be labelled a shadow 

indirect mean-variance utility function, since it adopts a reverse approach by searching for the 

parameters (ρ,µ) defining a shadow risk aversion that renders the current portfolio optimal for 

the investor. This function is similar to the adjusted price function defined by Luenberger 

(1995) in consumer theory, whence our naming of the adjusted risk aversion function.  

 
Proposition 4.3. Let  be the EIP function defined on gS ℑ . At the point where  is 

differentiable, it has the following properties:  

gS

1)
 

( ) ( )( )( ) ( ) ( )( )RxIx
x

xU
x

xS xg Ω−=
∂

∂
=

∂
∂

ρµµρ 2,  

2)

 

( )
( )( ) ( )( )

( )x
xRV
xS

CtexRE

g ρ=
∂

∂

=

 and 
( )
( )( ) ( )( )

( )x
xRE
xS

CtexRV

g µ−=
∂
∂

=

 

where R denotes the vector of expected asset returns and I is a unit vector of appropriate 

dimensions. 
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Proof. 1) The proof is obtained by the standard envelope theorem. We have obviously the 

relationship 
( ) ( )( )( )

x
xU

x
xS xg

∂
∂

=
∂

∂ µρ , . Since ( )( )( ) ( ) ( ) RxRx
x

xU x Ω−=
∂

∂
ρµµρ 2, , we deduce the 

result. The proof for 2) is obtained in a similar way.   Q.E.D. 

 

Result 1) shows that the variations of the shortage function with respect to x are identical to 

the variation of the indirect utility function, but calculated with respect to the adjusted risk 

aversion function. Moreover, it can be directly linked to the return of each asset and the 

covariance matrix. Furthermore, result 2) shows that the shortage function decreases when the 

expected return increases. 

As shown below, one can link the adjusted risk aversion function and some kind of 

Marshalian demand for each asset. First, let us introduce the matrix of derivatives: 

[ ]

ji

ji

x

xB

,

,
















∂
∂
∂
∂

= µ

ρ

     (14) 

Moreover, given a risk aversion vector ( )µρ , , we define “Marshalian” demand for assets by: 

( ) ( )( )( ){ }ℑ∈= xxUm x ;maxarg, ,µρµρ     (15) 

One can then define some kind of Slutsky matrix: 

[ ] ( ) ( )
j,i

j,i
,m,,mS 








∂

∂
∂

∂
=

µ
µρ

ρ
µρ      (16) 

As shown in the next proposition, this Slutsky matrix can be linked to the matrix B. 

 
Proposition 4.4. Let  be the EIP function defined on gS ℑ . At the point where  is 

differentiable, it has the following properties: 

gS

1) 
( )

( )











×









+
−

+
= EV

EVEV
g,g

gg
I

gg
BS

µ
ρ

µρµρ 2
11

 

2) 

 
( )

( )











×















+
−

+
= µρ

µρµρ
,

g

g

gg
I

gg
BS

E

V

EVEV

TT
2
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3) 
( )

( )EV
E

V

Ev
g,g

g

g

gg
IBB ×















+
−=+

2
1
µρ
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Proof. 1) Let us consider ( ) ( )
EV gg

,,
µρ

µρ
µρ

+
= . We have the equalities: 

( )2
1 E

Vk

n...k k g
m

x µ
1

VEV g
g

gg ρ

ρ
µρ +

−
+ρ

ρ
ρ
ρ

=
∂

∂
∂
∂

=
∂
∂ ∑

=
;

( )2
1

1

EV

E

EV

k

n...k k gg
g

gg
m

x µρ
µ

µρµ
µ

µ
µ

+
−

+
=

∂
∂

∂
∂

=
∂
∂ ∑

=
;

( )2
1 EV

Ek

n...k k gg
gm

x µρ
ρ

ρ
ρ

µ
ρ

+
−=

∂
∂

∂
∂

=
∂
∂ ∑

=
; and 

( )2
1 EV

Vk

n...k k gg
gm

x µρ

µ
ρ

ρ
ρ
µ

+
−=

∂
∂

∂
∂

=
∂
∂ ∑

=
. Now, 

since 



















∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∑∑

∑∑

==

==

µ
µ

ρ
µ

ρ
ρ

ρ
ρ

k

nk k

k

nk k

k

nk k

k

nk k
m

x
m

x

m
x

m
xBS

...1...1

...1...1  

we deduce the result. 2) is obtained by taking the transpose of 1). 3) follows by combining 1) 

and 2).  Q.E.D. 

 

This proof can also be derived from Luenberger (1996). This result states that the Slutstky 

matrix, characterizing the “Marshalian” demand for each asset, is a type of skewed 

pseudo-inverse of the matrix B. 

 

5. Computational Aspects of the EIP Function 

The representation set ℜ , defined by expression (6), can be used directly to compute the EIP 

function by recourse to standard quadratic optimisations methods. Assume a sample of m 

portfolios (or investment funds) . Now, consider a specific portfolio ymyyy ,...,, 21 k for 

 whose performance needs to be gauged. The shortage function for this portfolio 

y

{ m,...,k 1∈ }
k under evaluation is computed by solving the following quadratic program: 

( )( ) ( )( )
( )( ) ( )( )

nixx
bAx

xRVgyRV

xREgyREts

i
ni

i

V
k

E
k

...1,0,1

..
max

...1
=≥=

≤

≥−

≤+

∑
=

δ

δ

δ

  (P1) 

From equations (2) and (3), program (P1) can be rewritten as follows: 
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( )( ) ( )

( )( )

nixx
bAx

xxgyRV

RExgyREts

i
ni

i

ji
jijiV

k
ni

iiE
k

...1,0,1

..
max

...1

,
,

...1

=≥=

≤

Ω≥−

≤+

∑

∑

∑

=

=

δ

δ

δ

  (P2) 

Thus, one quadratic program is solved for each portfolio to assess its performance. To obtain 

the entire decomposition from Definition 4.2, one only needs to compute the additional 

quadratic program from Definition 4.1. Then, applying expression (11) and Definition 4.2 

itself, the components OE and AE follow suit. 

All of the above programs can be seen as special cases of the following standard form: 

( )
( )

p
kk

jj

T

Rz

rkzQ

qjzLts
zc

∈

=≤

==

...1,

...1,..
min

β

α
  (P3) 

where is a linear map for j = 1...q and Q  is a positive semi-definite quadratic form for k = 

1...r. In the case of program (P2), q=1, and r=n+3, the latter because there are n 

non-negativity constraints. Program (P3) is a standard quadratic optimisation problem (see 

Fiacco and McGormick (1968), Luenberger (1984)).  

jL k

A novel result of some practical significance is that the adjusted risk aversion function 

(13) can be derived from the Kuhn-Tucker multipliers in program (P2). This is shown in the 

next proposition. 

 

Proposition 5.1. Let  such that program (P2) has a regular optimal solution. Let 

 and  be respectively the Kuhn-Tucker multipliers of the first two constraints in 

program (P2). If the EIP function is differentiable at point , then: 

{ m,...,k 1∈ }
0≥Eλ 0≥Vλ

ℑ∈ky

1) We have: 
( )
( )( )

( )( ) ( )( )
and

yRV
yS

V

yREyRE
yy

g

k

k
λ=

∂

∂

=
=

 
( )
( )( )

( )( ) ( )( )
E

yRVyRV
yy

g

k

kyRE
yS

λ−=
∂

∂

=
=

 

2) The adjusted price function is identical to the Kuhn-Tucker multipliers: 
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( ) ( ) ( )EV
k ,y, λλµρ =

 

Proof. 1) The proof is based on the sensitivity theorem (e.g., Luenberger (1984)). A solution 

of Program (P2) is immediately obtained solving the program: 

( ) ( )( )
( )( )

nixx
bAx

yRVgxx

yREgRExts

i
ni

i

k
V

ji
jiji

k
E

ni
ii

...1,0,1

..
min

...1

,
,

...1

=≤−=

≤

≤+Ω

−≤+−

−

∑

∑

∑

=

=

δ

δ

δ

  (P4) 

Remark: all constraint functions on the left hand side in the two first inequalities are convex. 

Therefore, (P4) has the standard form described in Luenberger (1984). Now, let us consider 

the parametric program: 

( )

nixx
bAx

cgxx

cgRExts

i
ni

i

VV
ji

jiji

EE
ni

ii

...1,0,1

..
min

...1

,
,

...1

=≥=

≤

≤+Ω

≤+−

−

∑

∑

∑

=

=

δ

δ

δ

  (P5) 

Since (P2) has a regular optimal solution, the bordered Hessian of (P4) at the optimum is 

non-singular. Consequently, the sensitivity theorem applies. Let ( )EV ccx ,*

 

 be the optimal 

solution of the parametric program (P5). Let us denote ( )( )EV c,c*x*δ−  the corresponding 

optimal value function. By definition, the Kuhn-Tucker multipliers of programs (P2) and (P4) 

are identical. From the sensitivity theorem, we have: 

( )( )( )
( )( )

andV
yRVcV

EV

k
V

c
c,c*x*

λ
δ

−=
∂

−∂

=  

( )( )( )
( )( )

E
yREcE

EV

k
E

c
c,c*x*

λ
δ

−=
∂

−∂

−=

 

We immediately deduce that  

( )
( )( )

( )( ) ( )( )k

k

yREyRE
yy

g

yRV
yS

=
=∂

∂ ( )( )( )
( )( )

V
yRVcV

EV

k
V

c
c,c*x*

λ
δ

=
∂

−∂
−=

=

 

Moreover: 

17 



 

( )
( )( )

( )( ) ( )( )k

k

yRVyRV
yy

g

yRE
yS

=
=∂

∂
 

( )( )( )
( ) ( )( )

( )( )( )
( )( )

E
yREcE

EV

yREcE

EV

k
E

k
E

c
c,c*x*

c
c,c*x*

λ
δδ

−=
∂

−∂
=

−∂

−−∂
−=

−==−

. 

This ends the proof. 2) This result is immediate from Proposition 4.3, 2).  Q.E.D. 

 

It may seem that the interest of our approach based on quadratic programming 

concerns essentially the original Markowitz model with short sales excluded. Our models 

would then simply provide a novel approach to the efficiency of portfolio management in the 

case of regulated investment funds, such as mutual funds in the United States, unit trusts in 

the UK, or EU-regulated UCITS7, which under current regulation cannot invest in uncovered 

derivative instruments. Of course, if the possibility of short sales is not excluded or if there 

exists a riskless asset with zero variance and non-zero positive return, then the efficient 

frontier is straightforwardly determined by simpler, analytical solutions without recourse to 

quadratic optimisation (e.g., Elton, Gruber and Padberg (1979)). However, the quadratic 

programming approach remains valid in general. In particular, since quadratic program P3 can 

be derived from P4, it does not require a positive definite covariance matrix. Therefore, our 

models remain equally valid under these cases, with practical applications to measuring asset 

management efficiency for, e.g., regulated funds of futures and unregulated hedge funds.  

Computation of these quadratic programs provides an inner bound approximation of 

the true, unknown portfolio frontier. This envelopment frontier is akin to the production 

frontiers alluded to in the introduction. This estimator is a nonparametric method, inasmuch 

as no functional form is specified for the Pareto frontier. Figure 3 illustrates this logic behind 

the performance gauging of portfolios using program (P2). We evaluate the technically 

inefficient observations (V0,E0) to (V3,E3) and project them onto the portfolio frontier using 

the same direction vector g. By adding fictitious points or by implementing a critical line 

 
7 UCITS is the acronym for “Undertakings for Collective Investment in Transferable Securities”, as regulated 
under a European Community directive of 1985 which, just as the American law of 1940 regulating mutual 
funds, precludes any form of leveraging, whether from borrowed funds or the use of uncovered derivatives. 
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search following Markowitz (1959), it is possible to refine the approximation of the efficient 

set of portfolios until it coincides with the Markowitz frontier.  

<FIGURE 3 ABOUT HERE> 

We end with two general remarks. One is concerned with the possibility of weakly 

efficient portfolios. The other observation focuses on the selection of a direction vector 

 in all these mathematical programs. ( EV ggg ,−= )

First, the projection of (V0,E0) onto a vertical segment of the set of weakly efficient 

portfolios illustrates the scope for further removing inefficiencies until one reaches the global 

minimum variance portfolio. A pragmatic solution is to substitute the global minimum 

variance portfolio, that provides a better expected return for the same risk, for projection 

points representing weakly efficient portfolios (identifiable by positive slack variables). 

Theoretical solutions that could be developed require sharpening the definition of the efficient 

frontier, or formulating doubts about the choice of direction ( )EV ggg ,−=  for weakly 

efficient portfolios (e.g., selecting a direction that guarantees at least a projection onto the 

global minimum variance portfolio). We deem such developments beyond the scope of this 

contribution. Furthermore, assuming one is interested in estimating the OE decomposition 

(OE implying strongly efficient portfolios), the problem of weakly efficient portfolios is 

limited to the PE component and only leads to a slight change in the relative importance of 

both components (AE versus PE). 

Second, some remarks on the choice of the direction vector may prove useful. In 

principle, various alternative directions are possible (e.g., Chambers, Chung and Färe (1998)). 

For instance, it is possible to choose a common direction for all portfolios, as illustrated in 

Figure 3 above. This has a clear economic meaning in consumer theory where, for instance, 

utility may be measured using a type of distance function with respect to a common basket of 

goods (see the benefit function in Luenberger (1992)). But the economic interpretation of a 

common direction g in production and investment theory is not evident to us. 

A far more straightforward choice for investment theory is to use the observation 

under evaluation itself (i.e., ( )( ) ( )( )( xRE,xRVg −= ) ). Then, the shortage function measures 
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the maximum percentage of risk reduction and expected return improvement. The dual 

formulation of the shortage function leads to a simpler interpretation: 
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ){ }001

001

001

≥≥=−=

≥≥=+−−=

≥≥=+−=

ρµµρ

ρµρµµρ

ρµρµµρ

µρµρ

µρ

µρ

,,xU;xU,*Uinf

,,xRVxRE;xU,*Uinf

,,gg;xU,*UinfxS

,,

,

VE,g

 (17) 

Now, by a simple normalization scheme (see Chambers, Chung and Färe (1998)), we can 

equivalently write: 

( )
( ) ( ) ( )

( ) ( ) 











≥≥
−

= 00 ',';
xU

xU','*U
infxS

','

','
g ρµ

µρ

µρ

µρ    (18) 

Thus, the shortage function is now interpreted as the minimum percentage improvement in the 

direction to reach the maximum of the utility function (i.e., the indirect utility function). Since 

we work in mean-variance space, the shadow risk-aversion minimising this percentage 

provides a general efficiency index. 

 

6. Empirical Illustration: Investment Funds 

To show the ease of implementing the basic framework developed in this contribution, we 

compute the decomposition of overall efficiency for a small sample of 26 investment funds 

earlier analysed in Morey and Morey (1999). Return and risk are computed over a 3-year time 

horizon between July 1992 and June 1995 (see their Tables 1 and 8). Computing program 

(P2), the quadratic program in Definition 4.1 for parameters µ = 1 and ρ = 2, and applying the 

decomposition in Definition 4.2, we obtain the results summarised in Table 1. To save space, 

we do not report portfolio weights and slack variables. Risk aversion is based on conventional 

values for ρ that often range between 0.5 and 10 (e.g., Uysal, Trainer and Reis (2001)). 

To underline the ease of interpretation of our performance measure, we briefly 

comment on the decomposition results of a single fund: “44 Wall Street Equity”. It could 

improve its overall efficiency by 40%, both in terms of improving its return and reducing its 

risk. In terms of the decomposition, 22.5% of this rather poor performance is due to portfolio 

inefficiency, i.e., operating below the portfolio frontier, while 17% is due to allocative 

inefficiency, i.e., choosing a wrong mix of return and risk given the postulated risk attitudes. 
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The average performance of the investment funds is rather poor. They could improve 

their performance by about 58%, with the majority of inefficiencies being attributed to 

portfolio inefficiency. Looking at individual results, none of the investment funds perfectly 

suits the investors’ preferences. Therefore, all are to some extent overall inefficient. The last 

investment fund in the list comes closest to satisfying the investors’ needs. Only one 

investment fund (number 3) is portfolio efficient and is part of the set of frontier portfolios. 

The residual degree of allocative efficiency, listed in the third column, is small compared to 

the amount of portfolio inefficiency detected. This relative importance of portfolio efficiency 

relative to allocative efficiency is a finding not uncommon in production analysis. Whether 

the same general tendency also holds in portfolio gauging remains an open question. 

Obviously, these efficiency measures can be easily used as a rating tool. 

The same results are also depicted graphically in Figure 4. We plot the return and risk 

investment funds in the sample, their projections onto the portfolio frontier using the shortage 

function (PE), and the single point on the frontier maximising the investors’ preferences 

(OE).  

<TABLE 1 ABOUT HERE> 

<FIGURE 4 ABOUT HERE> 

A potential major issue is the sensitivity of our results, and in particular the 

decomposition, to the postulated risk aversion parameters. Using Proposition 5.1, one can 

easily retrieve the adjusted risk aversion function minimizing inefficiency from the 

Kuhn-Tucker multipliers in program (P2). These shadow risk aversions are reported in the last 

column of Table 1. Note that for one fund the shadow risk aversion is zero, due to a positive 

slack in the risk dimension. For the sample, the shadow risk aversion is on average 0.162 with 

a standard deviation of 0.087. To test the sensitivity of decomposition results, we have also 

computed the average efficiency components for the parameter µ = 1 and a rather wide range 

of values for ρ. The results shown in Figure 5 for values ranging from almost 0 to 10 and in 

the detail window for the range between 0.05 and 1 indicate that the main source of 

inefficiency remains portfolio efficiency, except when risk aversion approaches zero. 
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Allocative efficiency is minimised for the value of the above-mentioned shadow risk aversion 

and increases slightly for deviations on both sides of this minimum. 

<FIGURE 5 ABOUT HERE> 

We end with two remarks. First, the confrontation between postulated risk aversion 

parameters and shadow risk aversion could be instructive. For instance, it makes it possible to 

assess whether portfolio management strategies adhere to certain specified risk profiles. 

Second, while the decomposition as such depends on a specified risk aversion parameter, in 

case one considers risk aversion to be unknown one could equally well ignore overall 

efficiency to focus on portfolio efficiency as such.  

 

7. Conclusions 

The objective of this paper has been to introduce a general method for measuring the 

efficiency of portfolios. Portfolios are benchmarked by simultaneously looking for risk 

contraction and mean return augmentation using the shortage function framework 

(Luenberger (1995)). The virtues of our approach can be summarised as follows: (i) it does 

not require the complete estimation of the efficient frontier but reveals the Markowitz 

efficient frontier by a nonparametric envelopment method; (ii) its efficiency measure lends 

itself perfectly for performance gauging; (iii) it yields interesting dual interpretations (iv) it 

stays close to the theoretical framework of Markowitz (1959) and does not require any 

simplifying hypotheses (in contrast to, e.g., Sharpe (1963)). A simple empirical application on 

a limited sample of investment funds served to illustrate the computational feasibility of this 

general framework. 

The general idea of looking for both risk contraction and mean return expansion may 

well prove useful in a wide range of both theoretical and pragmatic financial models. Just to 

open up some perspectives, we mention three theoretical extensions and provide a limited 

selection of empirical possibilities. First, right from the outset, the mean variance approach 

has been criticised and alternative criteria for portfolio selection based, among others, upon 

higher order moments have been developed (see Philippatos (1979b)). Since the shortage 

function is a distance (gauge) function, a perfect representation of multidimensional choice 
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sets, we conjecture that our framework could well be extended to these multidimensional 

portfolio selection approaches. Second, it is obvious that statically efficient portfolios may 

well prove dynamically inefficient, e.g., because investors may hedge intertemporal shifts in 

their opportunity sets. Therefore, it may be desirable to develop a multiperiod portfolio 

selection generalisation of our model. This could perhaps be achieved along the lines 

proposed in Li and Ng (2000). Third, recent research indicates that nonparametric frontier 

methods are not necessarily deterministic (Simar and Wilson (2000)). Contrary to widespread 

opinion, these models can be conceived as measuring efficiency relative to a nonparametric, 

maximum likelihood estimate of an unobserved (monotone and concave) true frontier. 

Asymptotic sampling distributions are rarely available, but confidence bounds for efficiency 

scores can be obtained via smoothed bootstrapping. These developments may pave the way 

for introducing computer-intensive statistical testing in this nonparametric approach.  

In terms of practical applications, performance measures like Jensen’s alpha and the 

Sharpe index have recently been estimated for a sample of applied to U.S. mutual funds using 

a nonparametric frontier technique (Murthi, Choi and Desai (1997)) inspired by Data 

Envelopment Analysis. Furthermore, financial institutions have been assessed by Kestemont, 

Wibaut and Boussemart (1996) using nonparametric frontiers in terms of their return and the 

several types (transactional, market, liquidity, capital, etc.) of risks they face (see also Pastor 

(1999)). Finally, the performance of investment funds has been gauged over different time 

horizons using an approach similar to us (Morey and Morey (1999)). Instead of having one 

mean return dimension and one risk dimension, return and risk information pertaining to 

different time horizons is included (assuming investors value the information for each time 

horizon equally). Clearly, since these applications all use a specialised efficiency measure, a 

wide range of extensions appears to be possible for our more general performance index. 

At the philosophical level, the question remains whether eventually detected portfolio 

inefficiencies reveal judgemental errors on behalf of investors, or whether these are simply 

the result of not accounting for additional constraints inhibiting the achievement of full 

mean-variance efficiency. In the latter case, additional modelling efforts are no doubt required 

to derive what have been called “fitted portfolios” (Gouriéroux and Jouneau (1999)). 
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However, in analogy with similar discussions in production theory (e.g., Førsund, Lovell and 

Schmidt (1980)), we are inclined to conjecture that even accounting for additional constraints 

does not eliminate all portfolio inefficiencies. Therefore, having an unambiguous and general 

efficiency measure like the one proposed in this contribution remains as useful as ever. 
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Figure 1: Finding the Optimal Portfolio 
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Figure 2: Efficiency Improvement Possibility Function & Decomposition 
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Figure 3: Portfolio Efficiency Analysis: Projections onto the Nonparametric Frontier 
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Figure 4: Portfolio Frontier: Observed Portfolios and Decomposition Results 
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Figure 5: Sensitivity of Portfolio Efficiency Decomposition Results for ρ 
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Table 1: Decomposition Results for Morey and Morey (1999) Sample 
Observations OE PE AE φ* 
20th Century Ultra Investors 0.718 0.433 0.285 0.095 
44 Wall Street Equity 0.398 0.225 0.172 0.166 
AIM Aggressive Growth 0.606 0.000 0.606 0.072 
AIM Constellation 0.627 0.274 0.353 0.097 
Alliance Quasar A 0.616 0.550 0.066 0.205 
Delaware Trend A 0.610 0.351 0.259 0.116 
Evergreen Aggressive Grth A 0.742 0.538 0.204 0.108 
Founders Special 0.589 0.439 0.150 0.152 
Fund Manager Aggressive Grth 0.366 0.357 0.009 0.330 
IDS Strategy Aggressive B 0.593 0.583 0.011 0.314 
Invesco Dynamics 0.543 0.274 0.269 0.122 
Keystone Amer Omega A 0.521 0.448 0.073 0.213 
Keystone Small Co Grth (S-4) 0.722 0.331 0.391 0.079 
Oppenheimer Target A 0.402 0.320 0.082 0.219 
Pacific Horizon Aggr Growth 0.700 0.619 0.081 0.175 
PIMCo Adv Opportunity C 0.742 0.304 0.438 0.000 
Putnam Voyager A 0.541 0.323 0.218 0.135 
Security Ultra A 0.559 0.503 0.057 0.225 
Seligman Capital A 0.573 0.564 0.009 0.319 
Smith Barney Aggr Growth A 0.726 0.485 0.241 0.102 
State St. Research Capital C 0.643 0.245 0.399 0.089 
SteinRoe Capital Opport 0.588 0.317 0.272 0.116 
USAA Aggressive Growth  0.708 0.545 0.162 0.128 
Value Line Leveraged Gr Inv 0.481 0.319 0.163 0.161 
Value Line Spec Situations 0.687 0.517 0.170 0.129 
Winthrop Focus Aggr Growth 0.026 0.014 0.011 0.332 
Mean 0.578 0.380 0.198 0.162 
Standard deviation 0.155 0.159 0.152 0.087 
Maximum 0.742 0.619 0.606 0.332 

* Absolute risk aversion derived from the adjusted risk aversion function. 
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